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Abstract A method is presented for direct trajectory optimization and costate esti-
mation of finite-horizon and infinite-horizon optimal control problems using global
collocation at Legendre-Gauss-Radau (LGR) points. A key feature of the method is
that it provides an accurate way to map the KKT multipliers of the nonlinear pro-
gramming problem to the costates of the optimal control problem. More precisely, it
is shown that the dual multipliers for the discrete scheme correspond to a pseudospec-
tral approximation of the adjoint equation using polynomials one degree smaller than
that used for the state equation. The relationship between the coefficients of the
pseudospectral scheme for the state equation and for the adjoint equation is estab-
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lished. Also, it is shown that the inverse of the pseudospectral LGR differentiation
matrix is precisely the matrix associated with an implicit LGR integration scheme.
Hence, the method presented in this paper can be thought of as either a global im-
plicit integration method or a pseudospectral method. Numerical results show that
the use of LGR collocation as described in this paper leads to the ability to determine
accurate primal and dual solutions for both finite and infinite-horizon optimal control
problems.

Keywords Optimal control · Trajectory optimization · Collocation methods ·
Nonlinear optimization · Nonlinear programming

1 Introduction

Over the last decade, pseudospectral methods have increased in popularity in the
numerical solution of optimal control problems [1–16]. Pseudospectral methods are
a class of direct collocation where the optimal control problem is transcribed to a
nonlinear programming problem (NLP) by parameterizing the state and control using
global polynomials and collocating the differential-algebraic equations using nodes
obtained from a Gaussian quadrature. It is noted that some researchers prefer the
term orthogonal collocation [17–19], but the terms pseudospectral and orthogonal
collocation have the same meaning.

The three most commonly used set of collocation points are Legendre-Gauss (LG),
Legendre-Gauss-Radau (LGR), and Legendre-Gauss-Lobatto (LGL) points. These
three sets of points are obtained from the roots of a Legendre polynomial and/or
linear combinations of a Legendre polynomial and its derivatives. All three sets of
points are defined on the domain [−1,1], but differ significantly in that the LG
points include neither of the endpoints, the LGR points include one of the endpoints,
and the LGL points include both of the endpoints. In addition, the LGR points are
asymmetric relative to the origin and are not unique in that they can be defined us-
ing either the initial point or the terminal point. In recent years, the two most well
documented pseudospectral methods are the Legendre-Gauss-Lobatto pseudospec-
tral method [1, 3–5, 10, 11, 20, 21] (LPM) and the Legendre-Gauss pseudospectral
method [13–15, 22, 23]. A local collocation method based on LGR points is de-
veloped in Ref. [16] while an LGR method for solving infinite-horizon problems is
in Ref. [12]. Nonetheless, Legendre-Gauss-Radau collocation still remains the least
studied of the pseudospectral methods. The purpose of this paper is to describe a
method for direct trajectory optimization and costate estimation for general finite-
horizon and infinite-horizon optimal control problems using global collocation at
LGR points.

The pseudospectral LGR scheme presented in this paper is related to the scheme
of Kameswaran and Biegler in Ref. [16], however, the focus of our paper is quite
different. In Ref. [16], the authors partition the time interval into a mesh and use the
LGR scheme on each mesh interval. Convergence is achieved by increasing the num-
ber of mesh intervals. Here we focus on a global LGR scheme where convergence is
achieved by increasing the degree of the polynomials. In Ref. [12] Fahroo and Ross
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apply an LGR scheme to infinite horizon control problems. This is done by using a
change of variables to map the infinite time interval into a finite time interval, and
then applying an LGR scheme to the finite time interval problem. Since the change
of variables is singular at the final time, an LGR scheme avoided collocation at the
singularity. As explained in Sect. 8, the LGR scheme introduced in Ref. [12] is fun-
damentally different from the LGR scheme presented here because in the method
presented here the state is discretized at the LGR points plus the terminal point, thus
allowing for the solution of both finite-horizon and infinite-horizon optimal control
problems.

The approach developed in this paper is well-suited to problems that are suffi-
ciently smooth; that is, problems that have neither discontinuities in the control nor
large derivatives in the state. More generally, when approximating the solution to a
control problem, a high quality approximation in a low dimensional space might be
achieved by using piecewise polynomials with a high degree in time intervals where
the solution is smooth, and with a low degree in time intervals where the solution
lacks smoothness. In time intervals where the solution undergoes rapid change, the
mesh could be refined to improve the accuracy of the approximation. As a first step
towards developing a convergence theory for this framework where the degree of the
piecewise polynomials is allowed to vary, we need to understand the convergence
properties of discrete approximations generated by polynomials on a single interval,
as the degree of the polynomials increase. As can be seen in Refs. [24] or [25], the
key step in analyzing the conference of discrete approximations is to reformulate the
first-order optimality conditions in such a way that they become an approximation
to the optimality conditions for the continuous control problem. In this paper, we
develop and analyze these reformulated optimality conditions by exploiting a trans-
formed adjoint variable [26].

The paper is organized as follows: In Sect. 2 we discuss the choices for collocation
points and our notation. Section 3 introduces our Radau pseudospectral scheme for an
unconstrained control problem. In Sect. 4 we show that the first-order optimality con-
ditions associated with the pseudospectral scheme can be written as a pseudospectral
scheme for the adjoint equation. The polynomials associated with the transformed ad-
joint equation have degree one smaller than that of the polynomials associated with
the state equation discretization. In Sect. 5 we show that our pseudospectral scheme
is equivalent to an integrated system of equations. A modification of the method for
infinite-horizon problems is then discussed in Sect. 6. Section 8 compares our scheme
to the methods presented in Refs. [12] and [16]. Finally, Sects. 7 and 9 give numerical
examples and conclusions.

2 LG, LGR, and LGL collocation points

The LG, LGR, and LGL collocation points lie on the open interval τ ∈ (−1,1), the
half open interval τ ∈ [−1,1) or τ ∈ (−1,1], and the closed interval τ ∈ [−1,1],
respectively. A depiction of these three sets of collocation points is shown in Fig. 1
where it is seen that the LG points contain neither −1 or 1, the LGR points contain
only one of the points −1 or 1 (in this case, the point −1), and the LGL points contain
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Fig. 1 Schematic showing the differences between LGL, LGR, and LG collocation points

both −1 and 1. Denoting K as the number of collocation points and PK(τ) as the kth-
degree Legendre polynomial, the LG points are the roots of PK(τ), the LGR points
are the roots of PK−1(τ ) + PK(τ), and the LGL points are the roots of ṖK−1(τ )

together with the points −1 and 1:

LG: Roots obtained from PK(τ)

LGR: Roots obtained from PK−1(τ ) + PK(τ)

LGL: Roots obtained from Ṗk−1(τ ) together with the points −1 and 1

It is seen from Fig. 1 that the LG and LGL points are symmetric about the origin
whereas the LGR points are asymmetric. In addition, the LGR points are not unique
in that two sets of points exist (one including the point −1 and the other including
the point 1). The LGR points that include the terminal endpoint are often called the
flipped LGR points. In this paper, however, we use the standard set of LGR points as
defined above and consistent with the usage given in Ref. [20].

Notation. Throughout the paper, we employ the following notation. AT denotes the
transpose of a matrix A. Given two matrices A and B of the same dimensions, 〈A,B〉
is their dot product:

〈A,B〉 = trace ATB.

When A and B are vectors, this is the usual vector inner product. If f : R
n → R

m,
then ∇f is the m by n matrix whose i-th row is ∇fi . In particular, the gradient of a
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scalar-valued function is a row vector. If φ : R
m×n → R and X is an m by n matrix,

then ∇φ denotes the m by n matrix whose (i, j) element is

(∇φ(X))ij = ∂φ(X)

∂Xij

.

3 Formulation of pseudospectral method using LGR points

To simplify the exposition, we initially focus on an unconstrained control problem on
the time interval τ ∈ [−1,+1] with terminal cost. Note that the time interval can be
transformed from [−1,1] to the time interval [t0, tf ] via the affine transformation

t = tf − t0

2
τ + tf + t0

2
.

In this section, the goal is to determine the state x(τ ) ∈ R
n and the control u(τ ) ∈ R

m

which minimize the cost functional

�(x(1)) (1)

subject to the constraints

dx
dτ

= f(x(τ ),u(τ )), x(−1) = x0, (2)

where f : R
n × R

m → R
n and x0 is the initial condition, which we assume is given.

Let us consider N LGR collocation points τ1, τ2, . . . , τN on the interval [−1,1],
with τ1 = −1 and τN < +1. We introduce an additional noncollocated point τN+1 =
1 which is used to describe the approximation to the state variable. Each component
of the state x is approximated by a polynomial of degree at most N . Let Li , i =
1, . . . ,N + 1, be a basis of Lagrange polynomials given by

Li(τ ) =
N+1∏

j=1
j �=i

τ − τj

τi − τj

, i = 1, . . . ,N + 1.

The j -th component of the state is approximated by a series of the form

xj (τ ) ≈
N+1∑

i=1

xijLi(τ ). (3)

Differentiating the series and evaluating at the collocation point τk gives

ẋj (τk) ≈
N+1∑

i=1

xij L̇i(τk) =
N+1∑

i=1

Dkixij , Dki = L̇i(τk). (4)

The N by N + 1 matrix D is called the differentiation matrix. It has one row for each
collocation point; the elements in the ith column are the derivatives of the Lagrange
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polynomials evaluated at each of the collocation points. Let X denote the matrix
formed from the coefficients xij in (3). With this notation, DX is an N by n matrix
and (4) can be written

ẋj (τi) ≈ (DX)ij .

This approximation is exact if the components of x are polynomials of degree at
most N .

Let U be an N by m matrix with uij denoting the discrete approximation to the
j -th component of the control evaluated at the i-th collocation point:

uij ≈ uj (τi).

For the matrices X and U, and later for the matrices of Lagrange multipliers, sub-
scripts are used to denote rows of the matrix. In other words, Xi is the i-th row of
X. This row contains the components of the discrete approximation to xT(τi). Let
F(X,U) denote an N by n matrix whose (i, j) element is given by

Fij (X,U) = fj (Xi ,Ui ), 1 ≤ i ≤ N,1 ≤ j ≤ n. (5)

In the pseudospectral approach, it is required that the system dynamics is satisfied at
each of the N collocation points. With our notation, the discrete optimization problem
takes the form

minimize �(XN+1) subject to DX = F(X,U), X1 = x0, (6)

where x0 is treated as a row vector. The optimization problem in (6) is a nonlinear
programming problem.

We now develop the first-order optimality conditions for (6), also called as the
KKT conditions of the NLP. The system dynamics in (6) is composed of Nn equa-
tions. Let � denote the N by n matrix of Lagrange multipliers associated with the
system dynamics, and let μ be a 1 by n row vector of Lagrange multipliers associated
with the initial condition. The Lagrangian associated with (6) is

L(�,X,U) = �(XN+1) + 〈�,F(X,U) − DX〉 + 〈μ,x0 − X1〉.

The KKT conditions of the NLP are obtained by differentiating L with respect to
each component of X and U. Since i ranges between 1 and N in (5), F(X,U) is
independent of XN+1. Differentiating the Lagrangian with respect to XN+1 gives us
the condition

∇�(XN+1) = DT
N+1�, (7)

where Dj denotes the j -th column of D. Differentiating the Lagrangian with respect
to Xj gives

N∑

i=1

Dij�i = �j∇Xf(Xj ,Uj ), 2 ≤ j ≤ N. (8)
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Finally, differentiating with respect to X1 yield

N∑

i=1

Di1�i = �1∇Xf(X1,U1) − μ. (9)

Differentiating with respect to the control Uj , 1 ≤ j ≤ N , gives

�j∇U f(Xj ,Uj ) = 0. (10)

Let Dj :k denote the submatrix of D formed by columns j through k, and let Xj :k
be the submatrix of X corresponding to rows j through k. The system dynamics in
(6) can be rewritten

D2:N+1X2:N+1 = F(X,U) − D1x0. (11)

Similarly, the costate equations (8) and (9) can be rewritten

DT
1:N� = ∇X〈�,F(X,U)〉 − e1μ, (12)

where e1 is the first column of the identity matrix. We now observe that the N by N

matrices appearing on the left sides of these equation are invertible.

Proposition 1 The matrices D1:N and D2:N+1 obtained by deleting either the first or
the last column of D are invertible.

Proof Suppose that for some nonzero p ∈ R
N+1 with pN+1 = 0, we have Dp = 0.

Let p be the unique polynomial of degree N which satisfies p(τi) = pi , 1 ≤ i ≤
N + 1. Since the components of Dp are the derivatives of p evaluated at the colloca-
tion points, we have

0 = (Dp)i = ṗ(τi), 1 ≤ i ≤ N.

Since ṗ is a polynomial of N − 1, it must be identically zero since it vanishes at N

points. Hence, p is constant. Since p(1) = 0 and p is constant, it follows that p is
identically 0. This shows that pi = p(τi) = 0 for each i. Since the equation Dp = 0
with pN+1 = 0 has no nonzero solution, D1:N is nonsingular. The nonsingularity of
D2:N+1 is established in a similar way, but with p1 = 0 instead of pN+1 = 0. �

4 Transformed adjoint system

Analogous to Ref. [26], we now reformulate the KKT conditions of the NLP so that
they become a discretization of the first-order optimality conditions for the continu-
ous control problem (1)–(2). Let wi , 1 ≤ i ≤ N , be the quadrature weights associated
with the LGR points. These quadrature weights have the property that

∫ 1

−1
p(τ)dτ =

N∑

i=1

wip(τi)



342 D. Garg et al.

for all polynomials p of degree at most 2N − 2. Let W denote the N by N diagonal
matrix with i-th diagonal element wi and let λ be an N by n matrix defined by

λ = W−1�. (13)

We also define the row vector

λN+1 = DT
N+1�. (14)

In the formulas that follow, it is convenient to consider λ as an N by n matrix and to
view λN+1 as a distinct row vector, not the N +1-st row of λ. As we will see, the rows
of λ as well as λN+1 represent approximations to the continuous costate evaluated at
τi , 1 ≤ i ≤ N + 1. In order to connect the discrete costate equations to the continuous
costate equations, we employ an N by N matrix D†, which is a modified version of
D, defined as follows:

D
†
11 = −D11 − 1

w1
and D

†
ij = −wj

wi

Dji otherwise. (15)

According to the definition of λN+1, the adjoint boundary condition (7) is simply

∇�(XN+1) = λN+1. (16)

Utilizing (13) and (15), (8) reduces to

N∑

j=1

D
†
ijλj = −λi∇Xf(Xi ,Ui ), 2 ≤ i ≤ N. (17)

Similarly, (9) reduces to

N∑

j=1

D
†
1jλj = −λ1∇Xf(X1,U1) + 1

w1
(μ − λ1). (18)

Finally, dividing (10) by wj yields

λi∇U f(Xi ,Ui ) = 0, 1 ≤ i ≤ N. (19)

Equations (16)–(19) are incomplete since we introduced a new variable λN+1
without adding a new equation. We now develop an equation for this new variable
by manipulating (14). Let 1 denote a vector whose components are all equal to 1.
The components of the vector D1 are the derivatives at the collocation points of the
polynomial whose value is 1 at τi , 1 ≤ i ≤ N + 1. This polynomial is simply the
constant 1, whose derivative is 0 everywhere. Hence, we have D1 = 0, which implies
that

DN+1 = −
N∑

j=1

Dj . (20)
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Returning to the definition of λN+1 in (14), we obtain

λN+1 =
N∑

i=1

�iDi,N+1 = −
N∑

i=1

N∑

j=1

�iDij (21)

= �1

w1
+

N∑

i=1

N∑

j=1

�iD
†
ji

wj

wi

= �1

w1
+

N∑

i=1

N∑

j=1

�jD
†
ij

wi

wj

(22)

= λ1 +
N∑

i=1

N∑

j=1

wiλjD
†
ij (23)

= μ −
N∑

i=1

wiλi∇Xf(Xi ,Ui ), (24)

where (21) follows from the identity (20), (22) is the definition (15) of D†, (23) is the
definition (13) of λi , and (24) is the first-order optimality condition (17). Together
(16)–(19) and (24) form the complete transformed KKT conditions. More compactly,
the KKT conditions are

μ = ∇�(XN+1) +
N∑

i=1

wiλi∇Xf(Xi ,Ui ), (25)

D†λ = −∇X〈λ,F(X,U)〉 + 1

w1
e1(μ − λ1), (26)

0 = ∇U 〈λ,F(X,U)〉,
where (25) is obtained by combining (16) and (24).

We now compare the transformed KKT conditions for the discrete control problem
(the pseudospectral scheme) to the first-order optimality condition for the continuous
control problem (1)–(2):

λ(−1) = μ,

λ(1) = ∇�(x(1)),

λ̇(t) = −∇x〈λ(t), f(x(t),u(t))〉,
0 = ∇u〈λ(t), f(x(t),u(t))〉.

In the discrete problem, there is no multiplier corresponding to the final time τ = 1
since the system dynamics are collocated at τi , 1 ≤ i ≤ N , which are all strictly less
than 1. In the discrete optimality system, the boundary conditions for the continuous
optimality system are replaced by the integrated version (25). ∇�(XN+1) in (25)
corresponds to λ(1) in the continuous problem; the summation in (25) approximates
the integral of λ̇ over the interval [−1,1]. Hence, the right side of (25) approximates
λ(−1), which corresponds to λ1. Consequently, the condition (25) is a subtle way of
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enforcing the equality μ = λ1, in an approximate sense. If μ = λ1, then last term in
the discrete dynamics (26) vanishes. We will now show that the system (26), with the
last term dropped, is a pseudospectral scheme for the costate equation.

Theorem 1 The matrix D† defined in (15) is the differentiation matrix for the space
of polynomials of degree N − 1 evaluated at τi , 1 ≤ i ≤ N . In other words, if p is a
polynomial of degree at most N − 1 and if p ∈ R

N is the vector with i-th component
pi = p(τi), then

(D†p)i = ṗ(τi), 1 ≤ i ≤ N.

Proof Let D† denote the differentiation matrix defined in the statement of the theo-
rem. We will show that D† satisfies (15), which establishes the theorem. If p and q

are smooth, real-valued functions with p(1) = 0, then integration by parts gives

∫ 1

−1
ṗ(τ )q(τ )dτ = −p(−1)q(−1) −

∫ 1

−1
p(τ)q̇(τ )dτ. (27)

Suppose p is a polynomial of degree at most N and q is a polynomial of degree at
most N − 1 with N ≥ 1; in this case, ṗq and pq̇ are polynomials of degree at most
2N − 2. Since Gauss-Radau quadrature is exact for polynomials of degree at most
2N − 2, the integrals in (27) can be replaced by their quadrature equivalents to obtain

N∑

j=1

wj ṗj qj = −p1q1 −
N∑

j=1

wjpj q̇j ,

where pj = p(τj ) and ṗj = ṗ(τj ). More compactly, this can be expressed

(Wṗ)Tq = −p1q1 − (Wp)Tq̇.

Substituting ṗ = D1:Np and q̇ = D†q yields

pTDT
1:NWq = −p1q1 − pTWD†q.

This can be rearranged into the following form:

pT(DT
1:NW + WD† + e1eT

1)q = 0,

where e1 is the first column of the identity matrix. Since this identity must be satisfied
for all choices of p and q, we deduce that

DT
1:NW + WD† + e1eT

1 = 0,

which implies (15). This completes the proof. �

Thus we have shown that the transformed KKT conditions are related to a
pseudospectral discretization of the continuous costate equation. However, the dif-
ferentiation matrix in the costate discretization is based on the derivatives of polyno-
mials of degree N − 1, while the differentiation matrix in the state discretization is
based on the derivatives of polynomials of degree N .
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5 Integral formulation

Next, we show that pseudospectral discretization of the state equation has an equiva-
lent integrated formulation. Similar to (20), the identity D1 = 0 implies that

D1 = −
N+1∑

j=2

Dj = −D2:N+11. (28)

By Proposition 1 the matrix D2:N+1 is invertible. We multiply (28) by D−1
2:N+1 to

obtain

D−1
2:N+1D1 = −1. (29)

Let p be any polynomial of degree at most N . By the construction of the N by N + 1
differentiation matrix D, we have Dp = ṗ where

pi = p(τi), 1 ≤ i ≤ N + 1 and ṗi = ṗ(τi), 1 ≤ i ≤ N. (30)

Multiply the identity ṗ = Dp = D1p1 + D2:N+1p2:N+1 by D−1
2:N+1 and utilize (29) to

obtain

pi = p1 + (D−1
2:N+1ṗ)i , 2 ≤ i ≤ N + 1. (31)

Next, we obtain a different expression for pi − p1 based on the integration of
the interpolant of the derivative. Let L

†
j be the Lagrange interpolation polynomial

associated with the collocation points:

L
†
j (τ ) =

N∏

i=1
i �=j

τ − τi

τj − τi

, j = 1, . . . ,N.

Given a polynomial p of degree at most N , its derivative ṗ is a polynomial of degree
at most N − 1. Hence, ṗ can be interpolated exactly by the Lagrange polynomials
L

†
j :

ṗ(τ ) =
N∑

j=1

ṗjL
†
j (τ ).

We integrate from −1 to τi to obtain the relation

p(τi) = p(−1) +
N∑

j=1

ṗjAij , Aij =
∫ τi

−1
L

†
j (τ ) dτ,2 ≤ i ≤ N + 1. (32)

Utilizing the notation (30), we have

pi = p1 + (Aṗ)i , 2 ≤ i ≤ N + 1. (33)
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The relations (31) and (33) are satisfied for any polynomial of degree at most N .
Choose p1 = 0 and ṗ from the columns of the identity matrix to deduce that A =
D−1

2:N . Multiply (11) by A = D−1
2:N and utilize (29) to obtain

Xi = x0 + AiF(X,U), 2 ≤ i ≤ N + 1, (34)

where Ai is the ith row of A. Hence, the differential form of the state equation
DX = F(X,U) is equivalent to the integrated form (34), where the elements of A
are integrals of the Lagrange basis functions L

†
j defined in (32) while the elements

of D in the differential form are the derivatives of the Lagrange basis function Li

defined in (4).
To summarize, the approximation to the dynamics given in (34) is in the form

of a global implicit integration method while the differential approximation DX =
F(X,U) is in the form of a pseudospectral method. The fact that either the integral
or the differential form can be used shows that the Radau collocation method derived
in this paper can be thought of as either a global implicit integration method or a
pseudospectral method. In particular, using the pseudospectral form of LGR colloca-
tion results in a system of equations that has no loss of information from the integral
form (because the matrix D2:N is nonsingular). In the next section, the differential
form of LGR collocation, which we call the Radau pseudospectral method, is ap-
plied to a general optimal control problem.

6 Radau pseudospectral discretization of infinite-horizon problems

Consider the following optimal control problem. Minimize the infinite-horizon cost
functional

J =
∫ ∞

0
g(x(t),u(t), t)dt (35)

subject to the dynamic constraint

ẋ = f(x(t),u(t), t) (36)

with the initial condition

x(0) = x0. (37)

Consider further the following transformation of time found in Ref. [12]:

t = 1 + τ

1 − τ
. (38)

This transformation maps the interval t ∈ [0,∞) to the closed interval τ ∈ [−1,1].
Using (38), the infinite-horizon optimal control problem (35)–(37) can be written in
terms of τ as follows. Minimize the cost functional

J =
∫ 1

−1

2

(1 − τ)2
g(x(τ ),u(τ ), τ )dτ (39)
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subject to the dynamic constraint

dx
dτ

= 2

(1 − τ)2
f(x(τ ),u(τ ), τ ) (40)

with the initial condition

x(−1) = x0. (41)

The transformed infinite-horizon optimal control problem (39)–(41) can be solved
using the following modification of the Radau pseudospectral discretization of
Sect. 3. Minimize the cost function

J =
N∑

k=1

2wk

(1 − τk)2
g(Xk,Uk, τk) (42)

subject to the constraints

DX = TF(X,U),

X1 = x0,
(43)

where T is a diagonal matrix whose kth diagonal element is

Tkk = 2

(1 − τk)2
, 1 ≤ k ≤ N. (44)

It is noted in the NLP of (42)–(43) that the state is approximated at the LGR points
plus the terminal point (at τ = 1). Hence we obtain an approximation of the state at
the horizon t = ∞. Moreover, the NLP avoids the singularity at τ = +1 in the factor
2/(1 − τ)2 because τk = +1 is not a quadrature point. As is discussed in Sect. 8
below, the solution obtained using the Radau pseudospectral method of this paper
differs fundamentally from the infinite-horizon method given in Ref. [12] because in
the method of Ref. [12] the state is obtained only at the LGR points whereas in the
method presented here the state is obtained at the LGR points and the terminal point
τ = +1.

7 Examples

In this section we consider two examples using the aforementioned Radau pseudo-
spectral method. The first example is a nonlinear one-dimensional finite-horizon op-
timal control problem taken from Ref. [13] while the second example is an infinite-
horizon linear quadratic problem taken from Ref. [12]. It is noted that these two exam-
ples utilize the finite-horizon and infinite-horizon forms of the Radau pseudospectral
method, respectively.
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7.1 Example 1: Nonlinear one-dimensional finite-horizon problem

Consider the following optimal control problem. Minimize the cost functional

J = 1

2

∫ tf

0
(y + u2)dt (45)

subject to the dynamic constraint

ẏ = 2y + 2u
√

y, (46)

and the boundary conditions

y(0) = 2,

y(tf ) = 1,

tf = 5.

(47)

Fig. 2 Solution to Example 1 using 39 LGR points alongside exact solution
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Fig. 3 Error in Radau pseudospectral state for Example 1

It is noted that the exact solution to the optimal control problem of (45)–(47) is given
as

y∗(t) = x2(t),

λ∗
y(t) = λx

2
√

y
,

(48)

where x(t) and λx(t) are given as

[
x(t)

λx(t)

]
= exp(At)

[
x0
λx0

]
, (49)

where

A =
[

1 −1
−1 −1

]
,

x0 = √
2,

xf = 1,

λx0 = xf − B11x0

B12

(50)
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Fig. 4 Error in Radau pseudospectral control for Example 1

and

B =
[
B11 B12
B21 B22

]
= exp(Atf ). (51)

Example 1 was solved using the Radau pseudospectral method (RPM) with the
software OptimalPrime [27] and the NLP solver SNOPT [28] for N = 4 to N = 99
LGR points. The SNOPT optimality and feasibility tolerances were 10−10. A typical
solution for N = 39 LGR points (i.e., N + 1 = 40 discretization points) is shown
in Fig. 2 alongside the exact solution. Suppose now that we define the following
maximum absolute errors between the RPM solution and the exact solution:

ey = max
k∈[1,...,N+1]

log10

∣∣y(τk) − y∗(τk)
∣∣ ,

eλy = max
k∈[1,...,N+1]

log10

∣∣∣λy(τk) − λ∗
y(τk)

∣∣∣ ,

eu = max
k∈[1,...,N ]

log10

∣∣u(τk) − u∗(τk)
∣∣ .

(52)

Figures 3–4 show ey , eu, and eλy as a function of N + 1. It is seen that ey , eu, and eλy

decrease in a linear manner from N = 4 to 49. Moreover, for N ≥ 50 all three errors
remain essentially constant, ey and eu being constant at approximately 10−10 and eu

being constant at approximately 10−9, as expected from the SNOPT tolerances used.
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Fig. 5 Error in Radau pseudospectral costate for Example 1

The rate of decrease of e for the lower number of nodes is most revealing because it
shows that e decreases linearly, demonstrating a spectral convergence rate.

7.2 Example 2: Infinite-horizon LQR problem

Consider the following optimal control problem taken from Ref. [12]. Denoting
x(t) = [x1(t) x2(t)]T ∈ R

2 as the state and u(t) ∈ R as the control, minimize the
cost functional

J = 1

2

∫ ∞

0
(xT Qx + uT Ru)dt, (53)

subject to the dynamic constraint

ẋ = Ax + Bu, (54)

and the initial condition

x(0) =
[−4

4

]
. (55)

The matrices A, B, Q, and R for this problem are given as

A =
[

0 1
2 −1

]
, B =

[
0
1

]
, Q =

[
2 0
0 1

]
, R = 1

2
. (56)
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Fig. 6 Infinite-horizon Radau pseudospectral state solution for Example 2 using N = 34 (N + 1 = 35) as
a function of τ alongside exact solution

The exact solution to this problem is

x(t) = exp([A − BK] t)x(0),

u(t) = −Kx(t),

λ(t) = Sx(t),

(57)

where K is the optimal feedback gain and S is the solution to the algebraic Riccati
equation. In this case K and S are given, respectively, as

K = [
4.828427124746193 2.557647291327851

]
,

S =
[

6.031273049535752 2.414213562373097
2.414213562373097 1.278823645663925

]
.

(58)

The optimal control problem of (53)–(55) was solved using the infinite-horizon
version of the Radau pseudospectral method (as given in Sect. 6) using the soft-
ware OptimalPrime [27] and the NLP solver SNOPT [28] with default optimality
and feasibility tolerances of 10−6 and 2 × 10−6, respectively, for N = 4 to N = 34
(i.e., N + 1 = 5 to N + 1 = 35 points) by steps of 5. The infinite-horizon RPM so-
lution for N + 1 = 35 is shown in Figs. 6–7 as a function of τ alongside the exact
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Fig. 7 Infinite-horizon Radau pseudospectral control solution for Example 2 using N = 39 (N + 1 = 40)
as a function of τ alongside exact solution

solution. It is seen that the RPM solution and the exact solution are indistinguishable
for all three quantities (state, control, and costate). In particular, it is seen that the in-
finite horizon version of the RPM solves the problem at all of the LGR points plus the
point τ = +1 (i.e., t = ∞), thus computing the solution on the infinite horizon. Sup-
pose now that we define the following maximum absolute errors between the RPM
solution and the exact solution:

ex = max
k∈[1,...,N+1]

log10

∥∥x(τk) − x∗(τk)
∥∥ ,

eu = max
k∈[1,...,N ]

log10

∣∣u(τk) − u∗(τk)
∣∣ ,

eλ = max
k∈[1,...,N+1]

log10

∥∥λ(τk) − λ∗(τk)
∥∥ .

(59)

The values of ex, eλy , and eu are shown in Figs. 9–11. It is seen that all errors de-
crease linearly until approximately N = 35, again demonstrating a spectral conver-
gence rate.
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Fig. 8 Infinite-horizon Radau pseudospectral costate solution for Example 2 using N = 39 (N + 1 = 40)
as a function of τ alongside exact solution

8 Comparison with previous work on LGR collocation

It is noted that two earlier LGR collocation methods have been presented in Refs. [12]
and [16]. The method of Kameswaran and Biegler in Ref. [16] focuses on local col-
location using LGR points. The method of Fahroo and Ross in Ref. [12] describes
a global method for solving infinite-horizon problems. In this section we comment
briefly on how the method derived in this paper relates to this previous work.

8.1 Comparison with local LGR collocation method in Ref. [16]

The method derived in this paper shares similarities with the method of Ref. [16]
in that the approximation of the state uses the same basis of Lagrange polynomials.
It is noted, however, that the method of Ref. [16] uses local collocation, favoring
a small number of collocation points and many subintervals (called finite elements
in Ref. [16]). The degree of the polynomials on each subinterval is fixed and conver-
gence is achieved by increasing the number of subintervals. The current paper focuses
on a global collocation method where there is a single interval and convergence is
achieved by increasing the degree of the polynomials. The method of Ref. [16] leads
to a sparse optimization problem with a large number of variables and constraints at
the endpoints of each subinterval, while the global method in this paper leads to a low
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Fig. 9 Error in infinite-horizon Radau pseudospectral state solution as a function of N + 1

dimensional, dense optimization problem. The method of Ref. [16] is implemented
similar to an implicit Runge-Kutta method (due to the fact that the time interval is
divided into many subintervals) whereas the method derived in this paper is imple-
mented in the form of a pseudospectral method. It is noted that both approaches are
valid, but the current approach is consistent with the manner in which pseudospectral
methods have been implemented over the past several years in the aerospace control
literature.

8.2 Comparison with global infinite-horizon LGR method in Ref. [12]

In the Lobatto pseudospectral approach as described in Ref. [1], the state is approx-
imated by polynomials of degree N − 1 and the system dynamics is collocated at
the N Lobatto quadrature points. For the infinite horizon control problem studied in
Ref. [12], Fahroo and Ross propose using a change of variables to map the infinite
time interval onto the half-open interval [−1,+1). This change of variables leads to
a singularity in the transformed dynamics at τ = +1. Hence, it is not possible to col-
locate at τ = +1. To handle this singularity, Fahroo and Ross propose to collocate
and discretize at the Radau quadrature points for which τN < 1. The fundamental dif-
ference between the pseudospectral scheme of Ref. [12] and the scheme introduced
in this paper is that in Ref. [12], the state is approximated by polynomials of degree
N − 1, while in this paper the state is approximated using polynomials of degree
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Fig. 10 Error in infinite-horizon Radau pseudospectral control solution as a function of N + 1

N . This change in the degree of the polynomials leads to fundamental differences be-
tween the two schemes. For example, since the Lagrange polynomials are of different
degrees, the differentiation matrices are completely different. The differentiation ma-
trix used in Ref. [12] is singular, while the matrices D2:N+1 in (11) and D1:N in (12)
used in this paper are invertible. If the control and the initial state x0 are given, then
the collocated dynamics in Ref. [12] constitutes N equations in N − 1 unknowns
X2:N , an overdetermined system. In contrast, (11) constitutes N equations in N un-
knowns X2:N+1 where the coefficient matrix D2:N+1 is invertible. In the approach of
Ref. [12], XN+1, the estimate of the state at τ = +1, is removed from the problem by
using polynomials of degree N − 1 instead of polynomials of degree N . In the ap-
proach presented here, the state is approximated at τi , 1 ≤ i ≤ N + 1. Hence, XN+1,
the estimate of the state at the horizon, is a variable included in the pseudospectral
scheme. In addition to the fact that for infinite-horizon problems the state is estimated
at the horizon, the ability to estimate the state at τ = +1 is useful in finite-horizon
problems when the objective function depends on the state at the terminal time or
when there is an endpoint constraint.

9 Conclusions

A method has been presented for direct trajectory optimization and costate estimation
using global collocation at Legendre-Gauss-Radau (LGR) points. A theoretical foun-
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Fig. 11 Error in infinite-horizon Radau pseudospectral costate solution as a function of N + 1

dation for the method has been provided. The method can be viewed either as a global
implicit integration method or a pseudospectral method. Using the pseudospectral
(or differential) form, it is possible to solve general optimal control problems and
construct a complete mapping between the continuous and discrete variables. The
method presented in this paper has been demonstrated on both a finite-horizon and
infinite-horizon control problem, thereby demonstrating the range of its utility. The
results of this paper indicate that the Radau pseudospectral method described in this
paper leads to the ability to determine accurate primal and dual solutions to general
optimal control problems.
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