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State-defect constraint pairing graph coarsening method is described
for large sparse Karush-Kuhn-Tucker (KKT) matrices that arise from the
discretization of optimal control problems via an orthogonal collocation
method. The method takes advantage of the known sparsity pattern of
the KKT matrix. For any particular optimal control problem, the method
pairs each component of the state with its corresponding defect constraint.
Following that the method forces paired rows to be adjacent in the re-
ordered KKT matrix. Aggregate results are presented using a wide variety
of benchmark optimal control problems and show that the method reduces
the number of delayed pivots and the number of floating point operations
significantly.

I. Introduction

Efficient computation of numerical solutions to complex optimal control problems is of
great interest engineering and non-engineering disciplines. In recent years, direct collocation
methods have become the standard for solving optimal control problems numerically. In
this paper, a continuous optimal control problem is transcribed to a nonlinear programming
problem (NLP) using a previously developed Legendre-Gauss-Radau (LGR) orthogonal col-
location method.1–5 The NLP resulting from the LGR discretization can then be solved
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using a wide variety of well established NLP solvers (for example, SNOPT6 or IPOPT7).
A common feature of all of the available sparse NLP solvers is that the vast majority of
the computation time required to solve the NLP is the time required to solve the sparse
symmetric indefinite KKT systems. Consequently, a great deal of work has been done on
development of robust and efficient sparse symmetric indefinite linear solvers. Examples of
well-known sparse symmetric indefinite linear solvers include MA47,8 MA57,9 Mumps10 and
Pardiso.11 All of these linear solvers take advantage of the symmetry of the KKT matrix, and
only some of these linear solvers take advantage of the additional sparsity because of the zero
block in the KKT matrix, however, none of these linear solvers take advantage of the known
sparsity pattern of the KKT matrices arising from LGR collocation method. Additionally,
some of these off-the-shelf linear solvers use graph coarsening methods to partition the KKT
matrices into smaller systems of approximately the same size and solve these smaller systems
in parallel, however, none of these linear solvers use graph coarsening methods to decrease
the number of delayed pivots.

In this paper we propose a state-defect constraint pairing graph coarsening method tai-
lored for large-scale optimal control problems using LGR orthogonal collocation method.
The goal of the graph coarsening method is to design a more computationally efficient and
more robust numerical factorization of the sparse symmetric indefinite KKT matrices by
decreasing the number of delayed pivots and preventing the insufficient memory allocation.
The graph coarsening method is performed using only the properties of the continuous op-
timal control problem, the number of collocation points in each mesh iteration, and the
known sparsity pattern of the KKT matrices resulting from the LGR orthogonal collocation
method. The method is applied to a wide variety of benchmark optimal control problems
where the benefits of the graph coarsening method are demonstrated.

II. Solution of Optimal Control Problems

An optimal control problem determines the state, y(τ) ∈ R
n, and the control u(τ) ∈ R

m,
that minimize a cost functional subject to dynamic, path and event constraints. Throughout
this research optimal control problems are transcribed into nonlinear programming problems
of the form

minimize f(x) (1)

subject to c(x) = 0 (2)

xmin ≤ x ≤ xmax (3)

by a general purpose MATLAB software GPOPS-II12 that employs LGR orthogonal colloca-
tion method. A detailed explanation on LGR orthogonal collocation methods can be found
in Refs. 1–5. The NLP of Eqs. (1) - (3) is solved using the open-source NLP solver IPOPT7

in full Newton (second derivative) mode. IPOPT performs an interior-point method with a
filter-based line search. The details of this method are beyond the scope of this research but
can be found in Ref. 13. IPOPT solves a sparse symmetric KKT system at each iteration
where the KKT matrix has the form

[

H(k) ▽c(x(k))T

▽c(x(k)) 0

]

. (4)
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In Eq. (4)

H(k) = ▽2
xx
L(x(k)) + (Xk)−1Dk + (X

k
)−1D

k
. (5)

where L is the Lagrangian function, X = diag(xmax−x), X = diag(xmin−x), D
k
= diag(d

k
)

and Dk = diag(dk). If µ is the Lagrange multiplier that corresponds to the simple bounds
on x, d and d are defined as follows.

d = µ[X]−1e

d = µ[X]−1e

where e = (1, ..., 1)T. Sparse symmetric indefinite KKT matrices arising at every iteration
of IPOPT is solved using MA57.9

MA57 solves the KKT systems in three phases: analysis phase, numerical factorization
phase, and the solution phase. While a detailed description of the methods used in MA57
is beyond the scope of this paper (see Refs. 14–16), below MA57 analysis and numerical
factorization phases are briefly described. In the analysis phase, MA57 permutes the KKT
matrix using a fill-reducing algorithm, determines the elimination tree structure, postorders
the elimination tree, and forecasts the storage needs for the numerical factorization phase.
In the numerical factorization phase MA57 employs a multifrontal method that uses either a
1×1 or a 2×2 pivot to find the LDLT factorization of the permuted KKT matrix. Solution
accuracy of an indefinite matrix depends on the numerical values of the pivot. Therefore,
MA57 examines the numerical stability of pivots via a pivot threshold test is given as follows.
Accept the diagonal element of the kth row, ak,k, as the 1× 1 pivot if

|a−1
k,k|αk ≤ u−1 (6)

is satisfied or accept Bk,k as the 2× 2 pivot if

|B−1
k,k|

[

βk

βk+i

]

≤

[

u−1

u−1

]

, i > 1 (7)

is satisfied (0 < u < 0.5). αk, βk and Bk,k are given as follows.

αk = max
j≥k+1

|ak,j| (8)

βk = max
j≥k+2

|ak,j| (9)

and

Bk,k =

[

ak,k ak,k+i

ak+i,k ak+i,k+i

]

, i > 1 (10)

If a pivot cannot satisfy the 1×1 or the 2×2 pivot criterion then that pivot row is delayed to be
eliminated later in the factorization phase and the pivot search moves on to the next diagonal.
When MA57 analysis phase predicts the storage needs of the numerical factorization phase,
it does not take into account the delayed pivots. Delayed pivots increase the fill-in (number
of nonzeros in the L matrix) and the storage needs of the factorization phase. Therefore,
if there is a large number of delayed pivots, MA57 may fail due to insufficient memory
allocation. In that case, MA57 stops the numerical factorization phase and reallocates a
larger memory for the numerical factorization phase.
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III. KKT Matrix Properties & Observations on Delayed Pivots

One of the most important properties of the KKT matrices arising from LGR collocation
is their known sparse structure. Figure 1 shows an example of the sparsity pattern of a KKT
matrix arising from LGR collocation. As seen from Fig. 1, the Lagrangian Hessian and the
constraint Jacobian matrices have a great deal of structure. The Lagrangian Hessian and
the off-diagonal part of the constraint Jacobian matrices consist of purely diagonal blocks.
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Figure 1. Sparsity pattern of KKT matrices arising from LGR collocation

The KKT matrix given in Fig. 1 is a symmetric indefinite matrix which is factorized using
1 × 1 and 2 × 2 pivots. The 1 × 1 pivot properties of the KKT matrix shown in Fig. 1 are
given as follows: the state and control rows have always nonzero diagonals therefore these
rows may satisfy the 1 × 1 pivot criterion given in Eq. (6), on the other hand, the defect
and path constraint rows have always zero diagonals therefore these rows cannot satisfy the
1×1 pivot criterion unless the fill-in caused by the state and/or control rows is large enough.
Following the 1× 1 pivot properties, the 2× 2 pivot properties of the KKT matrix shown in
Fig. 1 are given. Constraints cannot form a nonsingular 2 × 2 pivot with other constraints
because the 2× 2 pivot formed by two constraints only consists of zeros, on the other hand,
constraints may form a 2× 2 pivot of the form

(

× ×

× 0

)

(11)

with variables.
Another important property of the KKT matrices arising from LGR collocation is that

the number of states are equal to the number of defect constraints.
Properties of KKT matrices arising from LGR collocation are described. We now give

our observations on delayed pivots that occur during the numerical factorization of the KKT
matrices arising from LGR discretization of continuous optimal control problems. Our first
observation is about the relationship between the number of floating point operations in
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the numerical factorization phase and the number of delayed pivots. As seen in Fig. 2 the
number of floating point operations in the numerical factorization phase increases with the
number of delayed pivots. Our second observation is about the nature of the delayed pivots.
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Figure 2. log
2
(Number of Delayed Pivots) vs log
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(Number of Floating Point Operations)

Most of the delayed pivots belong to the constraint Jacobian part of the KKT matrices and
they correspond to defect and path constraints of the discretized optimal control problem.
Additionally, most of the delayed defect constraint pivots belong to a frontal matrix with
one fully summed row and column.

IV. Graph Coarsening Method

The state-defect constraint pairing graph coarsening method uses a matching based graph
coarsening method. The difference between the matching based graph coarsening methods
in the literature17–19 and the proposed method is the choice of matching pairs. The matching
based graph coarsening methods in the literature use the characteristics of the original graph
to decide the pairs. On the other hand, the pairs of the state-defect constraint pairing graph
coarsening method is known a priori as a result of the known sparsity pattern of the KKT
matrices arising from LGR collocation method.

In this section, we concentrate on reducing the number of delayed pivots that correspond
to defect constraints of a continuous optimal control problem by performing a graph coarsen-
ing method tailored for KKT matrices arising from LGR collocation. As already mentioned,
defect constraints have zero diagonals. Therefore those rows in the KKT matrix cannot
satisfy the 1 × 1 pivot criterion unless the fill-in caused by a state or control component
is large enough. Moreover, a defect constraint may form a 2 × 2 pivot with a state or a
control component if that defect constraint is a function of that state or control component.
Additionally, most of the delayed defect constraint pivots belong to a frontal matrix with
one fully summed row and column. All of these properties of defect constraints and obser-
vations on delayed defect constraints lead to the conclusion that forcing a state or control
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pivot to be in the same frontal matrix with a defect constraint may decrease the possibility
of this defect constraint getting delayed. Consequently, the following questions arise: First,
which is better, pairing a defect constraint with a state component or a control component?
Second, which state or control component decreases the possibility of defect constraints get-
ting delayed? State components are "better" pairs for defect constraints as compared with
the control components because the number of defect constraints are equal to the number
of state components so there is a state pair for each defect constraint independent of the
continuous optimal control problem. On the other hand, the number of control components
may or may not be equal to the number of defect constraints depending on the continuous
optimal control problem. If the number of control components is less than the number of
defect constraints, some of the defect constraints remain without a pair. All together, if
a defect constraint and its corresponding state are in the same frontal matrix, that defect
constraint is less likely to be delayed.

This study proposes a graph coarsening method that forces state-defect constraint pairs to
be adjacent in the reordered KKT matrix. Although two consecutive rows are not guaranteed
to be in the same frontal matrix during the numerical factorization phase, forcing state-defect
constraint pairs to be consecutive increases the possibility of them being in the same frontal
matrix. The first step of the state-defect constraint pairing graph coarsening method is
finding the state-defect constraint pairs. The state-defect constraint pairs are found using
the properties of the continuous time optimal control problem, the number of collocation
points, and the known sparsity pattern of the KKT matrix. The next step of the graph
coarsening method is matching (collapsing) the vertices of the state-defect constraint pairs
and representing each pair with a multinode in the coarsened graph. Each multinode in
the coarsened graph consists of the union of vertices adjacent to the state-defect constraint
pair nodes. After coarsening, a fill-reducing ordering is performed on the coarsened matrix
and finally the reordered and coarsened matrix is uncoarsened. As a result of these steps,
state-defect constraint pairs at each collocation point are kept adjacent in the reordered
KKT matrix. In Section A it is demonstrated that the state-defect constraint pairing graph
coarsening method decreases the number of delayed pivots and therefore flop counts during
the numerical factorization phase.

A. Results

The state-defect constraint pairing graph coarsening method was performed on large sparse
KKT matrices. The KKT matrices associate with the nonlinear programming problems that
arise from LGR collocation of continuous optimal control problems taken from Refs. 20–28.
Firstly, the graph coarsening method and the approximate minimum degree algorithm29 were
performed on these KKT matrices. Secondly, the reordered KKT systems were solved by an
off-the-shelf linear solver MA57. Finally, the performance of MA57 numerical factorization
phases with and without the graph coarsening method were compared. Before giving a
detailed discussion on MA57 numerical factorization phase performance, we introduce some
terminology that is used throughout the performance analysis. Firstly, we refer to the KKT
matrices that are solved without a graph coarsening method as the original matrices and the
KKT matrices that are solved after performing a graph coarsening method as the coarsened
matrices. Moreover, MA57 returns two L matrices; one after the symbolic factorization phase
and one after the numerical factorization phase. As aforementioned, those two L matrices
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may be different for indefinite matrices because the symbolic analysis phase does not take
into account the 2 × 2 pivots and delayed pivots. We refer to the L matrix arising from
the symbolic factorization phase as the expected L matrix and the L matrix arising from
the numerical factorization phase as the actual L matrix. We also use terminology such as
the expected fraction and the actual fraction. In this study, the fraction refers to the ratio
of the state-defect constraint pairs that are in the same frontal matrix to the total number
of state-defect constraint pairs. Additionally, the expected and the actual fraction indicate
the fraction in the expected and the actual L matrices respectively. After introducing the
terminology, now we can start the performance analysis. Figure 3 compares the expected
L matrices arising from the symbolic factorization of original matrices with the actual L
matrices arising from the numerical factorization of original matrices in terms of the state-
defect constraint pair fraction. Figure 3(a) illustrates that the state-defect constraint pair
fraction in the expected L matrices changes between 0 to 0.3. As observed from Figs. 3(b)
and 3(c) state-defect constraint pair fraction in the actual L matrices is higher than the
state-defect constraint pair fraction in the expected L matrices. This shows us that the
state-defect pairs tend to be in the same frontal matrix in the actual L matrices. If the state
and its corresponding defect constraint are not in the same frontal matrix after the symbolic
factorization phase, defect constraints get delayed and end up in the same frontal matrix with
their corresponding state. The state-defect constraint pairing graph coarsening method aims
to decrease the number of delayed pivots by increasing the state-defect constraint fraction
in the expected L matrices. Figure 4 shows the state-defect constraint pair fraction in the
expected L matrix. As seen from Fig. 4 performing the graph coarsening method increases
the state-defect constraint pair fraction drastically. Figure 5 shows the ratio of the floating
point operations in the numerical factorization of coarsened matrices to the floating point
operations in the numerical factorization of original matrices. It is observed from Fig. 5 that
if an original matrix has approximately more than 1000 delayed pivots, then factorizing the
coarsened matrix always decreases the number of floating point operations. On the other
hand, if the number of delayed pivots of the original matrix is less than 1000, factorizing the
original matrix may be more efficient than factorizing the coarsened matrix.

V. Conclusions

First, a state-defect constraint pairing graph coarsening method has been described for
Karush-Kuhn-Tucker linear systems associated with the nonlinear programming problems
that arise from the discretization of continuous optimal control problems using the Legendre-
Gauss-Radau collocation method. It was found that if the number of delayed pivots in the
original matrix is large enough, the graph coarsening method decreases the number of delayed
pivots and floating point operations.
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