
EML 6934 – Optimal Control
Course Project

Fall 2017

1 Overview of Course Project

The project for the course is structured as follows. You are required to choose two problems
from the two lists shown below. One of the problems must be from Section 2 while the second
problem must be from Section 3. For the problem chosen from Section 2 you must compute
either the analytic optimal solution or must compute a numerical solution using an indirect
method (that is, by deriving the first-order optimality conditions and solving the Hamiltonian
boundary-value problem). You must then solve the problem using one of the direct methods
studied in the course. A comparison between the analytic/indirect solution and the direct so-
lution is then required. In your analysis you must explain the key issues encountered when
solving the problem using the indirect and direct approaches.

The problems from Section 3 do not have analytic solutions and cannot be easily solved us-
ing a simple indirect method (for example, indirect shooting). Consequently, it is necessary to
employ a more sophisticated approach to solve these problems. Your task is to solve your cho-
sen probem using either one of the indirect methods or one of the direct methods studied in
the course. Regardless of the approach you choose, you must provide the following analysis of
your numerical solutions. First, you must assess the proximity of your numerical solution to the
“true” optimal solution (knowing full well that you do not have the “true” optimal solution to
your chosen problem). In other words, how do you know you have obtained a good approxima-
tion to the true optimal? Next, you must provide a study of both the computational efficiency
and robustness of your chosen method in determining the numerical approximation. In your
analysis, explain how good an initial guess you need to provide in order to solve the problem
and how efficiently you are able to solve the problem. In addition, analyze the limitations of the
method you have chosen? Given your analysis, explain if the method you chose is the best one
for this type of problem? If not, which method would be more preferable?

As as part of your analysis you can check the numerical solutions you obtain against the solu-
tions obtained using the MATLAB optimal control software GPOPS− II. A license of GPOPS− II
is available at no charge for use at the University of Florida and can be obtained by registering on
the GPOPS− II website by clicking here. GPOPS− II implements a variable-order Legendre-
Gauss-Radau quadrature method and the details of the method can be found in the journal
article that is soon to appear in the ACM Transactions on Mathematical Software. The final version
of the journal article can be found by clicking here.

Finally, you must provide a comprehensive report detailing all of the results you obtained
and what you learned about the numerical methods you employed. You must also provide all
code used to generate your results. Please note, you must implement all numerical computations
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yourself and cannot use any canned software to solve your problems. The course project is due
on the last day of Spring 2014 classes.

2 Elementary Optimal Control Problems

Every problem found in this list has an analytic solution. You must choose one problem from
this Section for your project. For any problem you choose in this Section you are required to
derive the optimal solution using the optimal control theory learned in the course. Next, you
are required to solve your chosen problem using one of the indirect methods and one direct
method studied in the course. You must then compare the quality of the numerical solutions
obtained against the optimal solution. You must then analyze the quality of your numerical
approximations and assess the key computational issues you encountered when trying to solve
this problem using your chosen indirect and direct approach.

2.1 Hyper-Sensitive Problem

Consider the following optimal control problem taken from Ref. 1. Minimize the cost functional

J =
1

2

∫ tf

0

(x2 + u2)dt (1)

subject to the dynamic constraint
ẋ = −x+ u, (2)

the boundary conditions
x(0) = 1,
x(tf ) = 1.5,

(3)

and tf fixed. Solve this optimal control problem for the following values of tf : 10, 20, 50, 100, 500,
and 1000. Do you notice anything interesting in your ability to compute the both the analytic so-
lution on your computer and the numerical solution as tf increases? Describe your observation.

2.2 Linear Tangent Steering Problem

Consider the following optimal control problem. Minimize the cost functional

J = tf (4)

subject to the dynamic constraints
ẋ1 = x3,
ẋ2 = x4,
ẋ3 = a cosu,
ẋ4 = a sinu,

(5)
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and the boundary conditions
x1(0) = 0,
x2(0) = 0,
x3(0) = 0,
x4(0) = 0,
x2(tf ) = 5,
x3(tf ) = 45,
x4(tf ) = 0.

(6)

2.3 Ground Mobile Robot Problem

The following optimal control problem is originally found in Ref. 2 and corresponds to the min-
imum time transfer of a ground mobile between a given initial and terminal state. Minimize the
cost functional

J = tf (7)

subject to the dynamic constraints
ẋ = cos(θ),
ẏ = sin(θ),

θ̇ = u,
(8)

and the boundary conditions
x(0) = 0,
y(0) = 0,
θ(0) = −π,
x(tf ) = 0,
y(tf ) = 0,
θ(tf ) = π.

(9)

2.4 Moon Lander Problem

This optimal control problem was originally posed by Meditch.3 The objective is to attain a soft
landing on moon during vertical descent from an initial altitude and velocity above the lunar
surface. The problem is stated as follows. Minimize the cost functional

J =

∫ tf

0

udt (10)

subject to the dynamic constraints
ḣ = v,
v̇ = −g + u,

(11)

the boundary conditions
h(0) = 10,
v(0) = −2,
h(tf ) = 0,
v(tf ) = 0,

(12)

3



and the control inequality constraint

umin ≤ u ≤ umax, (13)

where umin = 0, umax = 3, g = 1.5, and tf is free.

2.5 Bryson-Denham Problem

Consider the following optimal control minimum-energy optimal control problem with an in-
equality state constraint taken from Ref. 4. Minimize the cost functional

J =
1

2

∫ 1

0

a2dt (14)

subject to the dynamic constraints

ẋ = v, (15)
v̇ = a, (16)

the boundary conditions

x(0) = x(1) = 0, (17)
v(0) = −v(1) = 1, (18)

and the constraint x(t) ≤ `.

3 Advanced Optimal Control Problems

No problem in this Section has an analytic solution. As a result, every problem must be solved
numerically. As with the elementary problems found in Section 2, the problem you choose in
this Section must be solved using either one of the indirect methods or one of the direct meth-
ods studied in the course. You must then provide the following analysis of your numerical
approximations. First, provide an assessment of the proximity of your numerical solutions to
the optimal solution (which, as stated, is not known for these problems). How do you know you
have obtained a reasonable approximation? Next, what is the computational efficiency of the
numerical methods you used to solve your problem? What are the limitations of the methods
you have chosen on your problem. Given your analysis, what numerical method would you
seek in order to overcome the deficiencies you found with the methods you chose?

3.1 Crossrange Maximization During Entry of a Reusable Launch Vehicle

The reusable launch vehicle entry problem is taken from Ref. 5. The objective of the problem is
to maximize the crossrange subtended by the vehicle during entry, where the entry starts at the
edge of the sensable atmosphere and terminates at the start of the terminal area energy management
(TAEM) phase. The problem is stated as follows. Maximize the objective functional

J = φ(tf ) (19)
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subject to the dynamic constraints

ṙ = v sin γ,

θ̇ =
v cos γ sinψ

r cosφ
,

φ̇ =
v cos γ cosψ

r
,

v̇ = −D
m
− g sin γ,

γ̇ =
L cosσ

mv
−
(g
v
− v

r

)
cos γ,

ψ̇ =
L sinσ

mv cos γ
+
v cos γ sinψ tanφ

r
,

(20)

and the boundary conditions

h(0) = 79248 km , h(tf ) = 24384 km,
θ(0) = 0 deg , θ(tf ) = Free,
φ(0) = 0 deg , φ(tf ) = Free,
v(0) = 7802.88 m/s , v(tf ) = 762.0 m/s,
γ(0) = −1 deg , γ(tf ) = −5 deg,
ψ(0) = 90 deg , ψ(tf ) = Free,

(21)

where r = h + Re is the geocentric radius, h is the altitude, Re is the polar radius of the Earth, θ
is the longitude, φ is the latitude, v is the speed, γ is the flight path angle, and ψ is the azimuth
angle. Furthermore, the aerodynamic and gravitational forces are computed as

D = ρv2SCD/2,
L = ρv2SCL/2,
g = µ/r2,

(22)

where ρ = ρ0 exp(−h/H) is the atmospheric density, ρ0 is the density at sea level,H is the density
scale height, S is the vehicle reference area, CD is the coefficient of drag, CL is the coefficient of
lift, and µ is the gravitational parameter. The coefficient of lift and drag are computed, respec-
tively, as

CD = CD0 + CD1α + CD2α
2, (23)

CL = CL0 + CL1α, (24)

where α is the angle of attack. Table 1 provides the constants used in this problem.

3.2 Maximization of Mass-to-Orbit for a Multiple-Stage Launch Vehicle

The problem considered in this section is the ascent of a multiple-stage launch vehicle. The
objective is to maneuver the launch vehicle from the ground to the target orbit while maximizing
the remaining fuel in the upper stage. It is noted that this example is is found verbatim in
Refs. 5–7. The problem is modeled using four phases where the objective is to maximize the
mass at the end of the fourth phase, that is maximize

J = m(t
(4)
f ) (25)
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Table 1: Constants for Reusable Launch Vehicle Entry Problem.

Quantity Value
Re 6.37120392× 106 m
S 249.9091776 m2

CD0 0.0785
CD1 −0.3529 rad−1

CD2 2.04 rad−2

CL0 −0.207
CL1 1.6756 rad−1

H 7254.24 m
ρ0 1.225571 kg·m−3

µ 3.986032× 1014 m3·s−2

m 92079.253 kg

subject to the dynamic constraints

ṙ(p) = v(p),

v̇(p) = − µ

‖r(p)‖3
r(p) +

T (p)

m(p)
u(p) +

D(p)

m(p)
,

ṁ(p) = − T (p)

g0Isp
,

(p = 1, . . . , 4), (26)

the initial conditions
r(t0) = r0 = (5605.2, 0, 3043.4)× 103 m,

v(t0) = v0 = (0, 0.4076, 0)× 103 m/s,
m(t0) = m0 = 301454 kg.

(27)

the interior point constraints

r(p)(t
(p)
f )− r(p+1)(t

(p+1
0 ) = 0,

v(p)(t
(p)
f )− v(p+1)(t

(p+1)
0 ) = 0, (p = 1, . . . , 3)

m(p)(t
(p)
f )−m(p)

dry −m(p+1)(t
(p+1)
0 ) = 0,

(28)

the terminal constraints (corresponding to a geosynchronous transfer orbit),

a(t
(4)
f ) = af = 24361.14 km , e(t

(4)
f ) = ef = 0.7308,

i(t
(4)
f ) = if = 28.5 deg , θ(t

(4)
f ) = θf = 269.8 deg,

φ(t
(4)
f ) = φf = 130.5 deg,

(29)

and the path constraints
‖r(p)‖22 ≥ Re,
‖u(p)‖22 = 1,

(p = 1, . . . , 4). (30)

In each phase r(t) = (x(t), y(t), z(t)) is the position relative to the center of the Earth expressed
in ECI coordinates, v = (vx(t), vy(t), vz(t)) is the inertial velocity expressed in ECI coordinates, µ
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is the gravitational parameter, T is the vacuum thrust, m is the mass, g0 is the acceleration due to
gravity at sea level, Isp is the specific impulse of the engine, u = (ux, uy, uz) is the thrust direction
expressed in ECI coordinates, and D = (Dx, Dy, Dz) is the drag force expressed ECI coordinates.
The drag force is defined as

D = −1
2
CDSρ‖vrel‖vrel (31)

where CD is the drag coefficient, S is the vehicle reference area, ρ = ρ0 exp(−h/H) is the atmo-
spheric density, ρ0 is the sea level density, h = r − Re is the altitude, r = ‖r‖2 =

√
x2 + y2 + z2

is the geocentric radius, Re is the equatorial radius of the Earth, H is the density scale height,
and vrel = v−ω × r is the velocity as viewed by an observer fixed to the Earth expressed in ECI
coordinates, and ω = (0, 0,Ω) is the angular velocity of the Earth as viewed by an observer in
the inertial reference frame expressed in ECI coordinates. Furthermore, mdry is the dry mass of
phases 1, 2, and 3 and is defined mdry = mtot −mprop, where mtot and mprop are, respectively, the
total mass and dry mass of phases 1, 2, and 3. Finally, the quantities a, e, i, θ, and φ are, respec-
tively, the semi-major axis, eccentricity, inclination, longitude of ascending node, and argument
of periapsis, respectively. The vehicle data for this problem and the the numerical values for the
physical constants can be found in Tables 2 and 3, respectively.

Table 2: Vehicle Properties for Multiple-Stage Launch Vehicle Ascent Problem.

Quantity Solid Boosters Stage 1 Stage 2
mtot (kg) 19290 104380 19300
mprop (kg) 17010 95550 16820
T (N) 628500 1083100 110094
Isp (s) 283.3 301.7 467.2

Number of Engines 9 1 1
Burn Time (s) 75.2 261 700

Table 3: Constants Used in the Launch Vehicle Ascent Optimal Control Problem.

Constant Value
Payload Mass 4164 kg

S 4π m2

CD 0.5
ρ0 1.225 kg/m3

H 7200 m
t1 75.2 s
t2 150.4 s
t3 261 s
Re 6378145 m
Ω 7.29211585× 10−5 rad/s
µ 3.986012× 1014 m3/s2

g0 9.80665 m/s2

3.3 Minimum Time-to-Climb of a Supersonic Aircraft

An extremely famous optimal control problem is the minimum time-to-climb of a supersonic aircraft.
This problem was originally solved for the F-4 aircraft in Ref. 8. In this Section we describe a vari-
ation of this famous problem using a model developed in Ref. 9 for a more modern supersonic
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aircraft. The objective of the problem is to minimize the cost functional

J = tf (32)

subject to the dynamic constraints

ḣ = v sin γ,
v̇ = T−D

m
− g sin γ,

γ̇ = g
v
(u− cos γ),

(33)

and the boundary conditions

h(0) = 0 , h(tf ) = 20000 m
v(0) = 129 m · s−1 , v(tf ) = 295 m · s−1,
γ(0) = 0 , γ(tf ) = 0,

(34)

where h is the altitude, v is the speed, γ is the flight path angle, T is the thrust force, D is the
drag force, g is the acceleration due to gravity, and u is the load factor (and is the control). The
thrust and drag are computed as

T = T (h,M) =
9.80665

2.2

5∑
i=0

ei(M)h̄i, (35)

D = q

[
CD0(M) +K(M)

(
mgu

q

)2
]
, (36)

(37)

where h̄ = h/1000, q = ρv2/2 is the dynamic pressure, M = v/a is the Mach number, a = a0
√
θ is

the speed of sound, ρ = ρ0 exp(y), and

y = y0 + y1h̄+ r, (38)
r = r0 exp(−z), (39)

z =
4∑
j=1

zjh̄
j, (40)

θ =
3∑
j=0

θjh̄
j, (41)

CD0 =

∑4
i=0 aiM

i∑4
j=0 biM

i
, (42)

K =

∑4
i=0 ciM

i∑5
i=0 diM

i
, (43)

ei =
5∑
j=0

fjiM
j, (i = 0, 1, . . . , 5). (44)
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aj bj cj dj
j = 0 +2.61059846050× 10−2 +1.37368651246× 100 +1.23001735612× 100 +1.42392902737× 101

j = 1 −8.57043966269× 10−2 −4.57116286752× 100 −2.97244144190× 100 −3.24759126471× 101

j = 2 +1.07863115049× 10−1 +5.72789877344× 100 +2.78009092756× 100 +2.96838743792× 101

j = 3 −6.44772018636× 10−2 −3.25219000620× 100 −1.16227834301× 100 −1.33316812491× 101

j = 4 +1.64933626507× 10−2 +7.29821847445× 10−1 +1.81868987624× 10−1 +2.87165882405× 100

j = 5 −− −− −− −2.27239723756× 10−1

Table 4: Coefficients yi, zi, and θi.

yi zi θi
i = 0 −1.02280550 −− +292.1000
i = 1 −0.12122693 −0.03486432410000 −8.877430
i = 2 −− +0.03509918650000 +0.193315
i = 3 −− −0.00008330005350 +0.003720
i = 4 −− +0.00000115219733 −−

Table 5: Coefficients r0 and ρ0.

Quantity Value
r0 1.0228055

ρ0 (kg·m−3) 1.2250000

Table 6: Coefficients fji, (j, i = 0, . . . , 5).

j\i fj0 fj1 fj2 fj3 fj4 fj5
j = 0 +119699.95703 −14644.656421 −455.34597613 +495.44694509 −46.253181596 +1.2000480258
j = 1 −352173.18620 +51808.811078 +2314.3969006 −2248.2310455 +208.94683419 −5.3807416658
j = 2 +604521.59152 −95597.112936 −3886.0323817 +3977.1922607 −368.35984294 +9.4529288471
j = 3 −430429.85701 +83271.826575 +1235.7128390 −3073.4191752 +293.88870979 −7.6204728620
j = 4 +136569.37908 −32867.923740 +555.72727442 +1063.5494768 −107.84916936 +2.8552696781
j = 5 −16647.992124 +4910.2536402 −235.91380327 −136.26703723 +14.880019422 −0.40379767869
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3.4 Two-Strain Tuberculosis Problem

Ref. 10 describe a model for two-strain tuberculosis treatment as follows:

In the absence of an effective vaccine, current control programs for TB have fo-
cused on chemotherapy. The antibiotic treatment for an active TB (with drug-sensitive
strain) patient requires a much longer period of time and a higher cost than that for
those who are infected with sensitive TB but have not developed the disease. Lack
of compliance with drug treatments not only may lead to a relapse but to the devel-
opment of antibiotic resistant TB âĂŤ one of the most serious public health problems
facing society today. A report released by the World Health Organization warns that
if countries do not act quickly to strengthen their control of TB, the multi-drug re-
sistant strains that have cost New York City and Russia hundreds of lives and more
than $1 billion each will continue to emerge in other parts of the world. The reduction
in cases of drug sensitive TB can be achieved either by “case holding,” which refers
to activities and techniques used to ensure regularity of drug intake for a duration
adequate to achieve a cure, or by “case finding,” which refers to the identification
(through screening, for example) of individuals latently infected with sensitive TB
who are at high risk of developing the disease and who may benefit from preventive
intervention. These preventive treatments will reduce the incidence (new cases per
unit of time) of drug sensitive TB and hence indirectly reduce the incidence of drug
resistant TB.

The dynamic model divides the host population into distinct epidemiological classes, in which
the population of each class is treated as a state variable. Thus, the total population satisfies the
relation

N = S + L1 + I1 + L2 + I2 + T (45)

where the state is (S, T, L1, I1, L2, I2) such that S are those that are susceptible to TB, T are those
who are treated effectively, L1 are those who are infected with latent typical non-infectious TB,
L2 are those who are infected with resistant but non-infectious TB, I1 are those are infected with
typical infectious TB, and I2 are those whos are infected resistant TB. The dynamics of the system
are given as

Ṡ = µN − β1S I1
N
− β∗ I2

N
− µS

Ṫ = u1r1L1 − µT + (1− (1− u2)(p+ q))r2I1 − β2T I1
N
− β∗T I2

N

L̇1 = β1S
I1
N
− (µ+ k1)L1 − u1r1L1 + (1− u2)pr2I1 + β2T

I1
N
− β∗L1

I2
N

L̇2 = (1− u2)qr2I1 − (µ+ k2)L2 + β∗(S + L1 + T ) I2
N

İ1 = k1L1 − (µ+ d1)I1 − r2I1
İ2 = k2L2 − (µ+ d2)I2

(46)

The objective is then to minimize the cost functional

J =

∫ tf

0

[
L2 + I2 +

1

2
B1u

2
1 +

1

2
B2u

2
2

]
dt (47)
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subject to the dynamic constraints of Eq. (46), the equality path constraint of Eq. (45), and the
initial conditions

L(0) = 76N/120,
T (0) = N/120,
L1(0) = 36N/120,
L2(0) = 2N/120,
I1(0) = 4N/120,
I2(0) = N/120,

(48)

where tf = 5 and the constants used for this problem are found in Table 7. Note for this problem
that the components of the state take on real values even though each state component represents
a quantity that in reality must take on an integer value.

Table 7: Constants Used in Tuberculosis Optimal Control Problem.

Quantity Value
β1 13
β2 13
µ 0.0143
d1 0
d2 0
k1 0.5
k2 1
r1 2
r2 1
p 0.4
q 0.1
N 30000
β∗ 0.029
B1 50
B2 500

3.5 Robot Arm Problem

The robot arm optimal control problem was originally posed and solved by Elizabeth Dolan
and Jorge J. More of Argonne National Laboratory. The objective of the problem is to minimize
the time taken to reorient the arm from an initial orientation to a final orientation. The optimal
control problem is stated as follows. Minimize the cost functional

J = tf (49)

subject to the dynamic constraints
ẋ1 = x2,
ẋ2 = u1/L,
ẋ3 = x4,
ẋ4 = u2/Iθ,
ẋ5 = x6,
ẋ6 = u3/Iφ,

(50)
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the control inequality constraints

|ui| ≤ 1, (i = 1, 2, 3), (51)

and the boundary conditions

t0 = 0 , tf = Free,
x1(t0) = 4.5 , x1(tf ) = 4.5,
x2(t0) = 0 , x2(tf ) = 0,
x3(t0) = 0 , x3(tf ) = 2π/3,
x4(t0) = 0 , x4(tf ) = 0,
x5(t0) = π/4 , x5(tf ) = π/4,
x6(t0) = 0 , x6(tf ) = 0,

(52)

where
Iφ = 1

3
[(L− x1)3 + x31] ,

Iθ = Iφ sin2(x5),
(53)

and L = 5.
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