EGM 3401

Theory Assignment \#3

Spring 2021

Question 1

Let \mathbf{a} and \mathbf{b} be vectors \mathbb{E}^{3} and let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is a right-handed orthonormal basis for \mathbb{E}^{3}. Furthermore, let $\mathbf{a} \times \mathbf{b}$ be the vector product between \mathbf{a} and \mathbf{b}. Derive an expression for the tensor $\mathbf{a}^{\times} \cdot \mathbf{b}=\mathbf{a} \times \mathbf{b}$ in terms of the basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, that is derive an expression for \mathbf{a}^{\times}in the basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ which has the form

$$
\mathbf{T}=\sum_{i=1}^{3} \sum_{j=1}^{3} T_{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}
$$

where $\mathbf{T}=\mathbf{a}^{\times}$.

Question 2

Consider a rigid body \mathcal{R}. Prove the following statements:
(a) $m \overline{\mathbf{r}}-\int_{\mathcal{R}} \mathbf{r} d m=\mathbf{0}$,
(b) $m^{\mathcal{N}} \overline{\mathbf{v}}-\int_{\mathcal{R}}{ }^{\mathcal{N}} \mathbf{v} d m=\mathbf{0}$,
(c) $m^{\mathcal{N}} \overline{\mathbf{a}}-\int_{\mathcal{R}}{ }^{\mathcal{N}} \mathbf{a} d m=\mathbf{0}$,
where $\left(\overline{\mathbf{r}},{ }^{\mathcal{N}} \overline{\mathbf{v}},{ }^{\mathcal{N}} \overline{\mathbf{a}}\right)$, are, respectively, the position, velocity, and acceleration of the center of mass of \mathcal{R}.

Question 3

Let $\boldsymbol{\tau}$ be a pure torque applied to a rigid body \mathcal{R}. Prove that the torque $\boldsymbol{\tau}$ is a free vector and can thus be transported between two points P anq Q on \mathcal{R} without changing the torque.

Question 4

The moment due to a system of forces $\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{n}\right)$ and a pure torque $\boldsymbol{\tau}$ applied to a rigid body \mathcal{R} relative to a point Q fixed in \mathcal{R} is defined as

$$
\mathbf{M}_{Q}=\sum_{i=1}^{N}\left(\mathbf{r}_{i}-\mathbf{r}_{Q}\right) \times \mathbf{F}_{i}+\boldsymbol{\tau}
$$

Show that \mathbf{M}_{Q} is related to \mathbf{M}_{P} (where \mathbf{M}_{P} is the moment due the system of forces $\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{n}\right)$ and the pure torque $\boldsymbol{\tau}$ relative to a point P) via

$$
\mathbf{M}_{P}=\mathbf{M}_{Q}+\left(\mathbf{r}_{Q}-\mathbf{r}_{P}\right) \times \mathbf{F}
$$

where \mathbf{F} is the resultant force acting on the rigid body.

Question 5

The angular momentum of a rigid body \mathcal{R} relative to an arbitrary point Q in an inertial reference frame \mathcal{N} is defined as

$$
{ }^{\mathcal{N}} \mathbf{H}_{Q}=\int_{\mathcal{R}}\left(\mathbf{r}-\mathbf{r}_{Q}\right) \times\left({ }^{\mathcal{N}} \mathbf{v}-{ }^{\mathcal{N}} \mathbf{v}_{Q}\right) d m
$$

Suppose now that the point Q is equal to a point B where B is fixed in \mathcal{R}. Prove that the angular momentum relative to point B is given as

$$
{ }^{\mathcal{N}} \mathbf{H}_{B}=\mathbf{I}_{B}^{\mathcal{R}} \cdot{ }^{\mathcal{N}} \boldsymbol{\omega}^{\mathcal{R}}
$$

where $\mathbf{I}_{B}^{\mathcal{R}}$ is the moment of inertia tensor of the rigid body \mathcal{R} relative to point B and ${ }^{\mathcal{N}} \boldsymbol{\omega}^{\mathcal{R}}$ is the angular velocity of \mathcal{R} as viewed by an observer in the inertial reference frame \mathcal{N}.

Question 6

Let \mathcal{R} be a rigid body, and let ${ }^{\mathcal{N}} \mathbf{H}_{Q}$ be the angular momentum of \mathcal{R} relative to an arbitrary point Q. Starting with the definition of the angular momentum of a rigid body relative to \mathcal{Q}, that is,

$$
{ }^{\mathcal{N}} \mathbf{H}_{Q}=\int_{\mathcal{R}}\left(\mathbf{r}-\mathbf{r}_{Q}\right) \times\left({ }^{\mathcal{N}} \mathbf{v}-{ }^{\mathcal{N}} \mathbf{v}_{Q}\right) d m
$$

prove that

$$
{ }^{\mathcal{N}} \mathbf{H}_{Q}={ }^{\mathcal{N}} \overline{\mathbf{H}}+\left(\mathbf{r}_{Q}-\overline{\mathbf{r}}\right) \times m\left({ }^{\mathcal{N}} \mathbf{v}_{Q}-{ }^{\mathcal{N}} \overline{\mathbf{v}}\right) .
$$

where ${ }^{\mathcal{N}} \overline{\mathbf{H}}$ is the angular momentum of \mathcal{R} relative to the center of mass of \mathcal{R}.

Question 7

Let \mathcal{R} be a rigid body and let \mathcal{N} be an inertial reference frame. Starting with the fundamental form of Euler's second law, that is,

$$
\frac{{ }^{\mathcal{N}}}{d}\left({ }^{\mathcal{N}} \mathbf{H}_{O}\right)=\mathbf{M}_{O}
$$

prove the following two results.
(a) If the reference point is the arbitary point Q, then

$$
\frac{{ }^{\mathcal{N}}}{d t}\left({ }^{\mathcal{N}} \mathbf{H}_{Q}\right)=\mathbf{M}_{Q}-\left(\overline{\mathbf{r}}-\mathbf{r}_{Q}\right) \times m^{\mathcal{N}} \mathbf{a}_{Q}
$$

(b) If the reference point is the center of mass of \mathcal{R}, then

$$
\frac{{ }^{\mathcal{N}}}{d t}\left({ }^{\mathcal{N}} \overline{\mathbf{H}}\right)=\overline{\mathbf{M}}
$$

The quantities ${ }^{\mathcal{N}} \mathbf{H}_{Q}$ and ${ }^{\mathcal{N}} \overline{\mathbf{H}}$ are, respectively, the angular momentum of the rigid body relative to an arbitrary point Q and the center of mass of \mathcal{R}.

Question 8

The kinetic energy of a rigid body is defined as

$$
T=\frac{1}{2} \int_{\mathcal{R}} \mathcal{N}_{\mathbf{v}} \cdot{ }^{\mathcal{N}} \mathbf{v} d m
$$

where the integral is taken over all material points in the body. Prove that T can be written as

$$
T=\frac{1}{2} \mathcal{N}_{\overline{\mathbf{v}}} \cdot{ }^{\mathcal{N}} \overline{\mathbf{v}}+\frac{1}{2}^{\mathcal{N}} \overline{\mathbf{H}} \cdot{ }^{\mathcal{N}} \boldsymbol{\omega}^{\mathcal{R}}
$$

This last result is called Koenig's decomposition for the kinetic energy of a rigid body.

Question 9

Consider a system of n particles with mass (m_{1}, \ldots, m_{n}). Suppose further that the position measured from a point O fixed in an inertial reference frame \mathcal{N} can be expressed as $\mathbf{r}_{i}=\overline{\mathbf{r}}+\boldsymbol{\rho}_{i}$, where $\overline{\mathbf{r}}$ is the position of the center of mass of the system. In addition, assume that the distance between each of the particles is a constant. Using the definition of angular momentum for the center of mass of a system of particles, show that

$$
{ }^{\mathcal{N}} \overline{\mathbf{H}}=\left[\sum_{i=1}^{n} m_{i}\left\{\left(\boldsymbol{\rho}_{i} \cdot \boldsymbol{\rho}_{i}\right) \mathbf{U}-\boldsymbol{\rho}_{i} \otimes \boldsymbol{\rho}_{i}\right\}\right] \cdot{ }^{\mathcal{N}} \boldsymbol{\omega}^{\mathcal{B}},
$$

where \mathcal{B} is the reference frame in which the particles are fixed and \mathbf{U} is the identity tensor (that is, $\mathbf{U} \cdot \mathbf{a}=\mathbf{a}$).

Question 10

Let \mathcal{R} be a rigid body. Show that the angular momentum of the rigid body relative to the center of mass can be written as

$$
{ }^{\mathcal{N}^{\mathbf{H}}} \overline{ }=\left[\int_{\mathcal{R}}\{(\boldsymbol{\rho} \cdot \boldsymbol{\rho}) \mathbf{U}-\boldsymbol{\rho} \otimes \boldsymbol{\rho}\} d m\right] \cdot{ }^{\mathcal{N}} \boldsymbol{\omega}^{\mathcal{R}},
$$

where \mathbf{U} is the identity tensor.

Question 11

Let ${ }^{\mathcal{A}} \boldsymbol{\omega}^{\mathcal{B}}$ be the angular velocity of reference frame \mathcal{B} relative to reference frame \mathcal{A}. Show that the operation of taking the vector product of ${ }^{\mathcal{A}} \boldsymbol{\omega}^{\mathcal{B}}$ with an arbitrary vector \mathbf{b} is a tensor and show the matrix representation of this tensor in a basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is fixed in \mathcal{B}.

Question 12

Let ${ }^{\mathcal{N}} \mathbf{H}_{Q}$ be the angular momentum of a rigid body \mathcal{R} relative to an arbitrary point Q. Prove that

$$
\frac{{ }^{\mathcal{N}}}{d t}\left({ }^{\mathcal{N}} \mathbf{H}_{Q}\right)=\frac{{ }^{\mathcal{R}} d}{d t}\left({ }^{\mathcal{N}} \mathbf{H}_{Q}\right)+{ }^{\mathcal{N}} \boldsymbol{\omega}^{\mathcal{R}} \times{ }^{\mathcal{N}} \mathbf{H}_{Q} .
$$

