EGM 3401

Theory Assignment #3

Spring 2021

Question 1

Let \mathbf{a} and \mathbf{b} be vectors \mathbb{E}^3 and let $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is a right-handed orthonormal basis for \mathbb{E}^3 . Furthermore, let $\mathbf{a} \times \mathbf{b}$ be the vector product between \mathbf{a} and \mathbf{b} . Derive an expression for the tensor $\mathbf{a}^\times \cdot \mathbf{b} = \mathbf{a} \times \mathbf{b}$ in terms of the basis $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$, that is derive an expression for \mathbf{a}^\times in the basis $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ which has the form

$$\mathbf{T} = \sum_{i=1}^{3} \sum_{j=1}^{3} T_{ij} \mathbf{e}_i \otimes \mathbf{e}_j,$$

where $T = \mathbf{a}^{\times}$.

Question 2

Consider a rigid body \mathcal{R} . Prove the following statements:

- (a) $m\bar{\mathbf{r}} \int_{\mathcal{R}} \mathbf{r} dm = \mathbf{0}$,
- (b) $m^{\mathcal{N}}\bar{\mathbf{v}} \int_{\mathcal{R}} {}^{\mathcal{N}}\mathbf{v} dm = \mathbf{0},$
- (c) $m^{\mathcal{N}}\bar{\mathbf{a}} \int_{\mathcal{R}} {}^{\mathcal{N}}\mathbf{a}dm = \mathbf{0}$,

where $(\bar{\mathbf{r}}, {}^{\mathcal{N}}\bar{\mathbf{v}}, {}^{\mathcal{N}}\bar{\mathbf{a}})$, are, respectively, the position, velocity, and acceleration of the center of mass of \mathcal{R} .

Question 3

Let τ be a pure torque applied to a rigid body \mathcal{R} . Prove that the torque τ is a free vector and can thus be transported between two points P and Q on \mathcal{R} without changing the torque.

Question 4

The moment due to a system of forces $(F_1, ..., F_n)$ and a pure torque τ applied to a rigid body \mathcal{R} relative to a point Q fixed in \mathcal{R} is defined as

$$\mathbf{M}_Q = \sum_{i=1}^{N} (\mathbf{r}_i - \mathbf{r}_Q) \times \mathbf{F}_i + \mathbf{\tau}$$

Show that M_Q is related to M_P (where M_P is the moment due the system of forces $(F_1, ..., F_n)$ and the pure torque τ relative to a point P) via

$$\mathbf{M}_P = \mathbf{M}_O + (\mathbf{r}_O - \mathbf{r}_P) \times \mathbf{F},$$

where F is the resultant force acting on the rigid body.

Question 5

The angular momentum of a rigid body $\mathcal R$ relative to an arbitrary point Q in an inertial reference frame $\mathcal N$ is defined as

$${}^{\mathcal{N}}\mathbf{H}_{Q} = \int_{\mathcal{R}} (\mathbf{r} - \mathbf{r}_{Q}) \times ({}^{\mathcal{N}}\mathbf{v} - {}^{\mathcal{N}}\mathbf{v}_{Q}) dm$$

Suppose now that the point Q is equal to a point B where B is fixed in \mathcal{R} . Prove that the angular momentum relative to point B is given as

$$^{\mathcal{N}}\mathbf{H}_{B}=\mathbf{I}_{B}^{\mathcal{R}}\cdot^{\mathcal{N}}\boldsymbol{\omega}^{\mathcal{R}},$$

where $\mathbf{I}_{B}^{\mathcal{R}}$ is the moment of inertia tensor of the rigid body \mathcal{R} relative to point B and ${}^{\mathcal{N}}\boldsymbol{\omega}^{\mathcal{R}}$ is the angular velocity of \mathcal{R} as viewed by an observer in the inertial reference frame \mathcal{N} .

Question 6

Let \mathcal{R} be a rigid body, and let ${}^{\mathcal{N}}\mathbf{H}_{\mathcal{Q}}$ be the angular momentum of \mathcal{R} relative to an arbitrary point \mathcal{Q} . Starting with the definition of the angular momentum of a rigid body relative to \mathcal{Q} , that is,

$$^{\mathcal{N}}\mathbf{H}_{Q} = \int_{\mathcal{R}} (\mathbf{r} - \mathbf{r}_{Q}) \times (^{\mathcal{N}}\mathbf{v} - ^{\mathcal{N}}\mathbf{v}_{Q}) dm,$$

prove that

$$^{\mathcal{N}}\mathbf{H}_{Q} = ^{\mathcal{N}}\mathbf{\tilde{H}} + (\mathbf{r}_{Q} - \mathbf{\tilde{r}}) \times m(^{\mathcal{N}}\mathbf{v}_{Q} - ^{\mathcal{N}}\mathbf{\tilde{v}}).$$

where ${}^{\mathcal{N}}\mathbf{\tilde{H}}$ is the angular momentum of \mathcal{R} relative to the center of mass of \mathcal{R} .

Question 7

Let \mathcal{R} be a rigid body and let \mathcal{N} be an inertial reference frame. Starting with the fundamental form of Euler's second law, that is,

$$\frac{\mathcal{N}}{dt}\left(\mathcal{N}\mathbf{H}_{O}\right)=\mathbf{M}_{O},$$

prove the following two results.

(a) If the reference point is the arbitary point Q, then

$$\frac{\mathcal{N}_{d}}{dt}\left(\mathcal{N}\mathbf{H}_{Q}\right) = \mathbf{M}_{Q} - (\bar{\mathbf{r}} - \mathbf{r}_{Q}) \times m^{\mathcal{N}}\mathbf{a}_{Q}.$$

(b) If the reference point is the center of mass of \mathcal{R} , then

$$\frac{\mathcal{N}}{dt}\left(^{\mathcal{N}}\bar{\mathbf{H}}\right) = \bar{\mathbf{M}}.$$

The quantities ${}^{\mathcal{N}}\mathbf{H}_Q$ and ${}^{\mathcal{N}}\mathbf{\tilde{H}}$ are, respectively, the angular momentum of the rigid body relative to an arbitrary point Q and the center of mass of \mathcal{R} .

Question 8

The kinetic energy of a rigid body is defined as

$$T = \frac{1}{2} \int_{\mathcal{R}} \mathcal{N} \mathbf{v} \cdot \mathcal{N} \mathbf{v} dm,$$

where the integral is taken over all material points in the body. Prove that T can be written as

$$T = \frac{1}{2}^{\mathcal{N}} \bar{\mathbf{v}} \cdot {}^{\mathcal{N}} \bar{\mathbf{v}} + \frac{1}{2}^{\mathcal{N}} \bar{\mathbf{H}} \cdot {}^{\mathcal{N}} \boldsymbol{\omega}^{\mathcal{R}}.$$

This last result is called *Koenig's decomposition* for the kinetic energy of a rigid body.

Question 9

Consider a system of n particles with mass (m_1, \ldots, m_n) . Suppose further that the position measured from a point O fixed in an inertial reference frame $\mathcal N$ can be expressed as $\mathbf r_i = \bar{\mathbf r} + \boldsymbol \rho_i$, where $\bar{\mathbf r}$ is the position of the center of mass of the system. In addition, assume that the distance between each of the particles is a constant. Using the definition of angular momentum for the center of mass of a system of particles, show that

$$^{\mathcal{N}}\mathbf{\tilde{H}} = \left[\sum_{i=1}^{n} m_{i} \left\{ (\boldsymbol{\rho}_{i} \cdot \boldsymbol{\rho}_{i})\mathbf{U} - \boldsymbol{\rho}_{i} \otimes \boldsymbol{\rho}_{i} \right\} \right] \cdot ^{\mathcal{N}}\boldsymbol{\omega}^{\mathcal{B}},$$

where \mathcal{B} is the reference frame in which the particles are fixed and U is the identity tensor (that is, $U \cdot a = a$).

Question 10

Let \mathcal{R} be a rigid body. Show that the angular momentum of the rigid body relative to the center of mass can be written as

$$^{\mathcal{N}}\mathbf{\tilde{H}} = \left[\int_{\mathcal{R}} \left\{ (\boldsymbol{\rho} \cdot \boldsymbol{\rho})\mathbf{U} - \boldsymbol{\rho} \otimes \boldsymbol{\rho} \right\} dm \right] \cdot ^{\mathcal{N}} \boldsymbol{\omega}^{\mathcal{R}},$$

where U is the identity tensor.

Question 11

Let ${}^{\mathcal{A}}\boldsymbol{w}^{\mathcal{B}}$ be the angular velocity of reference frame \mathcal{B} relative to reference frame \mathcal{A} . Show that the operation of taking the vector product of ${}^{\mathcal{A}}\boldsymbol{w}^{\mathcal{B}}$ with an arbitrary vector \mathbf{b} is a tensor and show the matrix representation of this tensor in a basis $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$, where $\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ is fixed in \mathcal{B} .

Question 12

Let ${}^{\mathcal{N}}\mathbf{H}_Q$ be the angular momentum of a rigid body \mathcal{R} relative to an arbitrary point Q. Prove that

$$\frac{\mathcal{N}_{d}}{dt}\left(\mathcal{N}_{H_{Q}}\right) = \frac{\mathcal{R}_{d}}{dt}\left(\mathcal{N}_{H_{Q}}\right) + \mathcal{N}_{\mathbf{w}}\mathcal{R} \times \mathcal{N}_{H_{Q}}.$$