EGM 3401

Theory Assignment \#1

Spring 2021

Question 1

Let \mathbf{u} be a vector with constant magnitude. Prove that

$$
{ }^{\mathcal{A}} \frac{d \mathbf{u}}{d t} \cdot \mathbf{u}=0
$$

where \mathcal{A} is an arbitrary reference frame.

Question 2

Let ${ }^{\mathcal{A}} d \mathbf{b} / d t$ be the rate of change of vector \mathbf{b} as viewed by an observer in reference frame \mathcal{A}. Explain why ${ }^{\mathcal{A}} d \mathbf{b} / d t$ is observed the same in all reference frames.

Question 3

Let ${ }^{\mathcal{A}} \boldsymbol{\omega}^{\mathcal{B}}$ be the angular velocity of reference frame \mathcal{B} as viewed by an observer in reference frame \mathcal{A}. Prove that ${ }^{\mathcal{A}} \boldsymbol{\omega}^{\mathcal{B}}=-{ }^{\mathcal{B}} \boldsymbol{\omega}^{\mathcal{A}}$.

Question 4

Let ${ }^{\mathcal{A}} \boldsymbol{\omega}^{\mathcal{B}}$ be the angular velocity of reference frame \mathcal{B} as viewed by an observer in reference frame \mathcal{A}. Prove that

$$
{ }^{\mathcal{A}} \frac{d}{d t}\left({ }^{\mathcal{A}} \boldsymbol{\omega}^{\mathcal{B}}\right)={ }^{\mathcal{B}} \frac{d}{d t}\left({ }^{\mathcal{A}} \boldsymbol{\omega}^{\mathcal{B}}\right)
$$

Question 5

Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be a right-handed orthonormal basis fixed in reference frame \mathcal{B}. Prove that ${ }^{\mathcal{A}} d \mathbf{e}_{i} / d t$, $(i=$ $1,2,3)$ cannot have a component in the direction of $\mathbf{e}_{i},(i=1,2,3)$ (that is, for any value of i, the rate of change of \mathbf{e}_{i} in reference frame \mathcal{A} cannot have a component in the direction of \mathbf{e}_{i}).

Question 6

Let \mathbf{u}_{1} and \mathbf{u}_{2} be orthogonal unit vectors. Prove that

$$
{ }^{\mathcal{A}} \frac{d \mathbf{u}_{1}}{d t} \cdot \mathbf{u}_{2}=-\mathbf{u}_{1} \cdot{ }^{\mathcal{A}} \frac{d \mathbf{u}_{2}}{d t}
$$

Question 7

Let \mathbf{a} and \mathbf{b} be vectors that lie in \mathbb{E}^{3}. Furthermore, consider the scalar product $\mathbf{a} \cdot \mathbf{b}$ between the vectors \mathbf{a} and \mathbf{b}. Finally, let $\mathbf{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be a basis for \mathbb{E}^{3}. Show that the scalar product expressed in the basis \mathbf{E} can be written as

$$
\{\mathbf{a} \cdot \mathbf{b}\}_{\mathrm{E}}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

where

$$
\{\mathbf{a}\}_{\mathbf{E}}=\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\} \quad \text { and } \quad\{\mathbf{b}\}_{\mathbf{E}}=\left\{\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right\}
$$

are the matrix representations of the vectors \mathbf{a} and \mathbf{b}, respectively, in the basis \mathbf{E}.

Question 8

Let \mathbf{a} and \mathbf{b} be vectors that lie in \mathbb{E}^{3}. Furthermore, consider the vector product between \mathbf{a} and \mathbf{b}. Finally, let $\mathbf{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be a basis for \mathbb{E}^{3}. Show that the vector product expressed in the basis \mathbf{E} can be written in matrix-vector form as

$$
\{\mathbf{a} \times \mathbf{b}\}_{\mathbf{E}}=\left\{\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right\}\left\{\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right\},
$$

where

$$
\{\mathbf{a}\}_{\mathbf{E}}=\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\} \quad \text { and } \quad\{\mathbf{b}\}_{\mathbf{E}}=\left\{\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right\}
$$

are the matrix representations of the vectors \mathbf{a} and \mathbf{b}, respectively, in the basis \mathbf{E}.

Question 9

Let \mathbf{a} and \mathbf{b} be vectors in \mathbb{E}^{3}. Show that the triple vector product $\mathbf{a} \times(\mathbf{b} \times \mathbf{a})$ can be written as

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{a})=(\mathbf{a} \cdot \mathbf{a}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{a} .
$$

