EGM 3401

Theory Assignment #1

Spring 2017

Due Date: 10 February 2017

Question 1

Let **u** be a vector with constant magnitude. Prove that

$$^{\mathcal{A}}\frac{d\mathbf{u}}{dt}\cdot\mathbf{u}=0$$

where $\ensuremath{\mathcal{A}}$ is an arbitrary reference frame.

Question 2

Let ${}^{\mathcal{A}}d\mathbf{b}/dt$ be the rate of change of vector **b** as viewed by an observer in reference frame \mathcal{A} . Explain why ${}^{\mathcal{A}}d\mathbf{b}/dt$ is observed the same in all reference frames.

Question 3

Let ${}^{\mathcal{A}}\boldsymbol{\omega}^{\mathcal{B}}$ be the angular velocity of reference frame \mathcal{B} as viewed by an observer in reference frame \mathcal{A} . Prove that ${}^{\mathcal{A}}\boldsymbol{\omega}^{\mathcal{B}} = -{}^{\mathcal{B}}\boldsymbol{\omega}^{\mathcal{A}}$.

Question 4

Let ${}^{\mathcal{A}}\boldsymbol{\omega}^{\mathcal{B}}$ be the angular velocity of reference frame \mathcal{B} as viewed by an observer in reference frame \mathcal{A} . Prove that

$${}^{\mathcal{A}}\frac{d}{dt}\left({}^{\mathcal{A}}\boldsymbol{\omega}^{\mathcal{B}}\right) = {}^{\mathcal{B}}\frac{d}{dt}\left({}^{\mathcal{A}}\boldsymbol{\omega}^{\mathcal{B}}\right)$$

Question 5

Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be a right-handed orthonormal basis fixed in reference frame \mathcal{B} . Prove that ${}^{\mathcal{A}}d\mathbf{e}_i/dt$, (i = 1, 2, 3) cannot have a component in the direction of \mathbf{e}_i , (i = 1, 2, 3) (that is, for any value of *i*, the rate of change of \mathbf{e}_i in reference frame \mathcal{A} cannot have a component in the direction of \mathbf{e}_i).

Question 6

Let \mathbf{u}_1 and \mathbf{u}_2 be orthogonal unit vectors. Prove that

$$\frac{\mathcal{A}}{dt}\frac{d\mathbf{u}_1}{dt}\cdot\mathbf{u}_2=-\mathbf{u}_1\cdot\frac{\mathcal{A}}{dt}\frac{d\mathbf{u}_2}{dt}.$$

Question 7

Let **a** and **b** be vectors that lie in \mathbb{E}^3 . Furthermore, consider the scalar product $\mathbf{a} \cdot \mathbf{b}$ between the vectors **a** and **b**. Finally, let $\mathbf{E} = {\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3}$ be a basis for \mathbb{E}^3 . Show that the scalar product expressed in the basis **E** can be written as

$$\{\mathbf{a} \cdot \mathbf{b}\}_{\mathbf{E}} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

where

$$\{\mathbf{a}\}_{\mathbf{E}} = \left\{ \begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right\} \quad \text{and} \quad \{\mathbf{b}\}_{\mathbf{E}} = \left\{ \begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right\}$$

are the matrix representations of the vectors **a** and **b**, respectively, in the basis E.

Question 8

Let **a** and **b** be vectors that lie in \mathbb{E}^3 . Furthermore, consider the vector product between **a** and **b**. Finally, let $\mathbf{E} = {\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3}$ be a basis for \mathbb{E}^3 . Show that the vector product expressed in the basis **E** can be written in matrix-vector form as

$$\{\mathbf{a} \times \mathbf{b}\}_{\mathbf{E}} = \left\{ \begin{array}{ccc} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array} \right\} \left\{ \begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right\},$$

where

$$\{\mathbf{a}\}_{\mathbf{E}} = \left\{ \begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right\} \text{ and } \{\mathbf{b}\}_{\mathbf{E}} = \left\{ \begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right\}$$

are the matrix representations of the vectors **a** and **b**, respectively, in the basis **E**.

Question 9

Let **a** and **b** be vectors in \mathbb{E}^3 . Show that the triple vector product $\mathbf{a} \times (\mathbf{b} \times \mathbf{a})$ can be written as

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{a}) = (\mathbf{a} \cdot \mathbf{a})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{a}.$$