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Chapter 1

Two-Body Problem

1.1 Introduction

The starting point for astrodynamics is the study of the classical two-body problem.
The two-body problem consists of a spacecraft in motion relative to a planet. Both
the spacecraft and the planet are modeled as a point mass, thereby assuming that the
planet exerts a central body gravitational force on the spacecraft. In this chapter the
key differential equation, called the two-body differential equation, is derived under
the assumption that the mass of the planet is significantly larger than the mass of the
spacecraft. This assumption leads to an approximation that the center of the planet
is an inertially fixed point, thereby approximating the planet as an inertial reference
frame. It is then shown that a vector, called the specific angular momentum, is fixed
in the inertial frame, thus leading to the fact that the solution lies in an inertially fixed
plane called the orbit plane. It is then shown that a second vector, called the eccentricity
vector, lies in the orbital plane and defines a direction from which the location of the
spacecraft is measured. The two-body differential equation is then solved as a function
of an angle, called the true anomaly, between the position of the spacecraft and the
eccentricity vector. Several key quantities are then defined that assist in developing
an understanding the motion of the spacecraft. Finally, some key properties of the
solution of the two-body differential equation are derived.

1.2 Two-Body Differential Equation

Consider a system consisting of a planet of mass M and a spacecraft of mass m.
The center of the planet is located at point P while the spacecraft is located at point
S. While both the planet and the spacecraft have nonzero sizes, in the development
presented here both objects are modeled as point masses (particles). Suppose now
that both the planet and the spacecraft move relative to an inertial reference frame I .
Furthermore, let rP and rS be the position of the planet and the spacecraft relative to
a point O, where O is fixed in I . Then the velocity and acceleration of the planet and
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the spacecraft relative to the inertial reference frame I are given, respectively, as

IvP =
IdrP
dt

, IaP =
Id
dt

(
IvP

)
,

IvS =
IdrS
dt

, IaS =
Id
dt

(
IvS

)
.

(1.1)

A schematic of the system consisting of the spacecraft and planet is shown in Fig. 1.1,

where the right-handed orthonormal basis
{
Ix, Iy , Iz

}
is fixed in the inertial reference

frame I .* Assume now that the only force acting on either the planet or the spacecraft
is that due to gravitational attraction applied by the other object (that is, the only
force acting on the spacecraft is that of gravitational attraction applied by the planet
and, vice versa, the only force acting on the planet is that of gravitational attraction
applied by the spacecraft). Under these assumptions, the objective is to determine the
differential equation of motion of the spaceaft relative to the planet.

Figure 1.1 Schematic of two-body problem consisting of a planet of mass M and a
spacecraft of mass m, where both the planet and the spacecraft are in motion relative
to an inertial reference frame I .

In order to determine the differential equation of motion of the spacecraft relative
to the planet the following additional notation will be helpful. Let r = rS − rP be the
position of the spacecraft relative to the planet and let r = ‖r‖ be the magnitude of
r (that is, r is the distance between P and S and will be referred to henceforth as the
radial distance from P to S). Then, from Newton’s universal law of gravitation, the

*In order to provide a compact notation, the convention will be adopted throughout the discussion that

an arbitrary reference frame A will be taken to be equivalent to a basis
{
ax ,ay ,az

}
that is fixed in A. In

other words, the notationA has the same meaning as the basis
{
ax ,ay ,az

}
, where

{
ax ,ay ,az

}
is fixed in

reference frameA.
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force exerted by the planet on the spacecraft, denoted FSP , is given as

FSP = −GmM‖r‖3
r = −GmM

r 3
r. (1.2)

In addition, from the strong form of Newton’s third law, the force exerted by the
spacecraft on the planet, denoted FPS , is given as

FPS = −FSP = GmMr 3
r. (1.3)

Applying Newton’s second law to both the spacecraft and the planet gives

FSP = mIaS , (1.4)

FPS = MIaP . (1.5)

Substituting the models for the forces FSP and FPS into Eqs. (1.4) and (1.5) gives

−GmM
r 3

r = mIaS , (1.6)

GmM
r 3

r = MIaP . (1.7)

Suppose now that Eqs. (1.6) and (1.7) are divided by m and M , respectively. Then

IaS = −GM
r 3

r, (1.8)

IaP = Gm
r 3

r. (1.9)

Subtracting Eq. (1.9) from (1.8) gives

IaS − IaP = IaS/P = Ia = −G(M +m)r 3
r, (1.10)

where the inertial acceleration of the spacecraft relative to the planet has been denoted
Ia, that is,

Ia = IaS − IaP . (1.11)

Equation (1.10) then simplifies to

Ia = −G(M +m)
r 3

r. (1.12)

Next, assume that the planet is significantly more massive than the spacecraft, that is,
M �m. As a result, M +m ≈ M and Eq. (1.12) further simplifies to

Ia = −GM
r 3

r. (1.13)

Finally, let µ = GM . Then Eq. (1.13) can be written as

Ia = − µ
r 3

r. (1.14)

The quantity µ = GM is called the gravitational parameter of the planet (and, because
µ depends upon the massM of the planet, µ is different for every planet). Now, because
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M �m, it is reasonable to approximate point P (that is, the location of the planet) to be
an inertially fixed point. In order to facilitate the discussion that follows, for simplicity
assume that point P (the location of the planet) and point O are coincident and that
from this point forth point O will be the inertially fixed point from which all distances
are measured. As a result, Ia is then approximated as the inertial acceleration of the
spacecraft (because, as stated, the planet is now considered an inertially fixed point).
Equation 1.14 can be rearranged to obtain

Ia+ µ
r 3

r = 0. (1.15)

Equation (1.15) is called the two-body differential equation and describes the motion of
a spacecraft of massm relative to a planet of mass M , where the planet is signficantly
more massive than the spacecraft.

1.3 Solution of Two-Body Differential Equation

In this section the solution of the two-body differential equation is now derived. The
solution to the two-body differential equation will be obtained by deriving two con-
stants of integration and using these two constants of integration to obtain the solu-
tion. First, define the quantity Ih as

Ih ≡ IhO = (r− rO)× (Iv− IvO). (1.16)

Consistent with the earlier assumption that O is the point from which all distances are
measured and is fixed in I , Eq. (1.16) reduces to

Ih = r× Iv. (1.17)

The quantity Ih is called the specific angular momentum of the spacecraft relative to
the planet. Computing the rate of change of Ih relative to the inertial reference frame
I gives

Id
dt

(Ih) = Id
dt

(
r× Iv

)
=
Idr

dt
× Iv+ r×

Id
dt

(
Iv
)
. (1.18)

Now it is noted that

Iv =
Idr

dt
, Ia =

Id
dt

(
Iv
)
. (1.19)

Substituting the expressions in Eq. (1.19) into Eq. (1.18) gives

Id
dt

(Ih) = Iv× Iv+ r× Ia. (1.20)

Then, using the fact that Iv×Iv = 0 together with the expression for Ia from Eq. (1.14),
the rate of change of Ih in Eq. (1.20) can be written as

Id
dt

(Ih) = r×
(
− µ
r 3

r
)
= − µ

r 3
r× r = 0. (1.21)
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where it is noted that the quantity −µ/r 3 is a scalar and can be factored out of the last
expression in Eq. (1.21). Equation (1.21) shows that the rate of change of Ih is zero
which implies that Ih is fixed in the inertial reference frame I and further implies that
the magnitude of Ih is constant, that is,

‖Ih‖ ≡ h = constant. (1.22)

Now, not only is Ih a constant of the motion for the two-body system, but also because
Ih is formed by taking the vector product of r with Iv, it must be the case that Ih is
orthognonal to the plane in which the solution of the two-body differential equation
lies, that is, Ih · r = 0 and Ih · Iv = 0.

Next, the specific angular momentum Ih together with the two-body differential
equation of Eq. (1.15) can be used to derive a second constant of integration. Specifi-
cally, taking the vector product of Eq. (1.15) on the left with Ih gives

Ia× Ih+ µ
r 3

r× Ih = 0. (1.23)

Now because Ih is fixed in I , it is the case that

Ia× Ih =
Id
dt

(
Iv× Ih

)
. (1.24)

Next, from the definition of the specific angular momentum given in Eq. (1.17) it is
noted that

r× Ih = r×
(
r× Iv

)
. (1.25)

Then, using the vector triple product identity a× (b× c) = (a · c)b− (a · b)c, Eq. (1.25)
can be re-written as

r× Ih = (r · Iv)r− (r · r) Iv. (1.26)

Therefore, the second term in Eq. (1.23) can be written as

µ
r 3

r× Ih = µ
r 3

[
(r · Iv)r− (r · r) Iv

]
(1.27)

Note, however, that

µ
Id
dt

(
r

r

)
= µ

Id
dt

(
r−1r

)
= µ

Id
dt

(
[r · r]−1/2 r

)
= µ

(
−1

2 [r · r]−3/2
(
r · Iv+ Iv · r

)
r+ [r · r]−1/2 Iv

)
= µ

(
− [r · r]−3/2

(
r · Iv

)
r+ [r · r]−1/2 Iv

)
= µ

(
−
[
r · Iv]
r 3

r+
Iv
r

)
= − µ

r 3

(
[r · Iv]r− r 2 Iv

)
= − µ

r 3

(
[r · Iv]r− [r · r] Iv

)
.

(1.28)



12 Chapter 1. Two-Body Problem

Therefore,
µ
r 3

([
r · Iv

]
r− [r · r] Iv

)
= −µ

Id
dt

(
r

r

)
= µ
r 3

r× Ih. (1.29)

Substituting the result of Eq. (1.29) into (1.23) gives

Ia× Ih+ µ
r 3

r× Ih =
Id
dt

(
Iv× Ih

)
− µ

Id
dt

(
r

r

)
= 0. (1.30)

The two terms in Eq. (1.30) can be combined to give

Ia× Ih+ µ
r 3

r× Ih =
Id
dt

(
Iv× Ih− µ r

r

)
= 0. (1.31)

Consequently,
Iv× Ih− µ r

r
= C, (1.32)

where C is fixed in the inertial reference frame I . The inertially fixed vector C is called
the Laplace vector and is fixed in the inertial reference frame I . A more commonly
used form of the Laplace vector is obtained by dividing Eq. (1.32) by µ as

Iv× Ih
µ

− r

r
= e. (1.33)

The vector e is called the eccentricity vector and, similar to the Laplace vector, is fixed
in the inertial reference frame I . It is noted that the eccentricity vector is a constant
of the motion (actually, it comprises three scalar constants of the motion because e is
itself a vector). Now, it is seen that

e · Ih =
[ Iv× Ih

µ
− r

r

]
· Ih =

Iv× Ih
µ

· Ih− r

r
· Ih = 0. (1.34)

Consequently, the eccentricity vector e is orthogonal to Ih. Moreover, because Ih is
orthogonal to the plane of the solution of the two-body differential equation it must
be the case that e lies in the plane of the solution of the two-body differential equation
given in Eq. (1.15).

The two orthogonal constant vectors Ih and e can now be used to derive the so-
lution of the two-body differential equation given in Eq. (1.15). First, recall that the
eccentricity vector e lies in the plane of the solution of Eq. (1.15). Then because e is
fixed in the inertial reference frame I , the magnitude of e is constant, that is,

e = ‖e‖ = constant (1.35)

The quantity e is called the eccentricity of the orbit. Then, taking the scalar product
of r with e gives

e · r = er cosν, (1.36)

where ν is the angle between e and r. Returning now to the expression for e as given
in Eq. (1.33), it is seen that

e · r =
Iv× Ih
µ

· r− r

r
· r =

Iv× Ih
µ

· r− r
2

r

=
Iv× Ih
µ

· r− r =
(
Iv× Ih

)
· r

µ
− r .

(1.37)
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Now it is noted from the scalar triple product that (b×c) ·a = (a×b) ·c which implies
that (

Iv× Ih
)
· r =

(
r× Iv

)
· Ih = Ih · Ih = h2. (1.38)

Equation 1.37 can then be re-written as

e · r = h
2

µ
− r . (1.39)

Setting the expressions in Eqs. (1.36) and (1.39) equal to one another gives

er cosν = h
2

µ
− r . (1.40)

Rearranging Eq. (1.40) gives

r(1+ e cosν) = h
2

µ
. (1.41)

Solving Eq. (1.41) for r gives

r = h2/µ
1+ e cosν

. (1.42)

Equation (1.42) defines a conic section where the form of the conic section depends
upon the value of e. Now, it is noted that r achieves its minimum when ν = 0 and
that when ν is zero the position vector r is aligned with e. The points at which r
is at its minimum and maximum are called, respectively, the periapsis and apoapsis.
Thus, it is seen that when ν is zero the spacecraft is at periapsis which implies that e
must lie along the direction from the planet to the periapsis. The angle ν is called the
true anomaly of the orbit. Equation (1.42) is called the orbit equation and defines the
solution of the two-body differential equation of Eq. (1.15) for the radius r (where it is
noted again that r = ‖r‖ is the distance from the planet to the spacecraft) in terms of
the true anomaly. A convenient way to visualize the geometry of the orbit equation is
shown in Fig. 1.2. Specifically, Fig. 1.2 shows that the direction of the specific angular
momentum Ih in Eq. (1.17) is orthogonal to the orbit plane and the orbit plane is fixed
in the inertial reference frame I . Moreover, the position and inertial velocity of the
spacecraft, r and Iv, both lie in the orbit plane.

1.4 Properties of the Orbit Equation

Several properties of the orbit equation are now derived. In order to derive these
important quantities it is useful to first define the quantity

p = h
2

µ
. (1.43)

which implies that
h = √µp (1.44)
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Figure 1.2 Schematic showing the plane in which the solution of the two-body dif-
ferential equation of Eq. (1.15) lies along with the specific angular momentum that lies
orthogonal to the plane of the solution.

The quantity p in Eq. (1.43) is called the semi-latus rectum or the parameter. In terms
of the semi-latus rectum, the orbit equation of Eq. (1.42) can be written in terms as

r = p
1+ e cosν

. (1.45)

It is the form of the orbit equation shown in Eq. (1.45) that will be used in all subse-
quent derivations.

1.4.1 Periapsis and Apoapsis Radii

Recall from earlier that the periapsis and apoapsis were defined as the points where the
spacecraft is closest to and furthest from from the planet, respectively. The periapsis
occurs when ν = 0 while the apoapsis occurs when ν = π . Suppose that the periapsis
and apoapsis radii are denoted as rp and ra, respectively. Then, given the locations of
periapsis and apoapsis, the quantities rp and ra are given from Eq. (1.45), respectively,
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as

rp = p
1+ e (1.46)

and

ra = p
1− e . (1.47)

Next, the sum of the periapsis and apoapsis radii is called the major-axis and is de-
noted 2a, that is,

2a = rp + ra. (1.48)

The quantity of interest for an orbit is what is known as the semi-major axis, a, and is
given as

a = rp + ra
2

. (1.49)

Equations (1.46) and (1.47) can then be used to relate the semi-latus rectum, the ec-
centricity, and the semi-major axis as follows. First, adding Eqs. (1.46) and (1.47) and
using the definition in Eq. (1.48) gives

rp + ra = 2a = p
1+ e +

p
1− e =

2p
1− e2

(1.50)

Equation (1.50) then implies that the semi-major axis is related to the semi-latus rec-
tum and the eccentricity as

a = p
1− e2

. (1.51)

Alternatively, rearranging Eq. (1.51), the semi-latus rectum is related to the semi-major
axis and the eccentricity as

p = a(1− e2). (1.52)

Then, substituting p from Eq. (1.52) into (1.46) and (1.47), the periapsis and apoapsis
radii are given as

rp = a(1− e
2)

1+ e (1.53)

and

ra = a(1− e
2)

1− e . (1.54)

Simplifying Eqs. (1.53) and (1.54), the periapsis and apoapsis radii are given as

rp = a(1− e) (1.55)

and

ra = a(1+ e). (1.56)

Next, Eqs. (1.46) and (1.47) can be used together to solve for e in terms of rp and ra.
First, subtracting Eq. (1.46) from (1.47) gives

ra − rp = p
1− e −

p
1+ e =

p(1+ e)− p(1− e)
(1+ e)(1− e) = 2pe

1− e2
. (1.57)
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Then, dividing Eq. (1.57) by (1.50) gives

e = ra − rp
ra + rp . (1.58)

Now, for an ellipse (the case where 0 < e < 1), the distance between the two foci,
defined as 2c, is given as

2c = ra − rp. (1.59)

Substituting the result of Eq. (1.59) into (1.58) gives

e = c
a

(1.60)

which implies that

c = ae (1.61)

The semi-minor axis is then related to the semi-major axis and the distance between
the two foci as

b2 = a2 − c2 = a2 − a2e2 = a2(1− e2) (1.62)

which implies that

b = a
√

1− e2. (1.63)

1.4.2 Specific Mechanical Energy

Suppose we define the quantities T and U as follows:

T = 1
2
Iv · Iv, (1.64)

U = −µ
r
. (1.65)

The quantities T and U are defined, respectively, as the specific kinetic energy and the
specific potential energy, respectively, relative to the inertial reference frame I . Next,
let E be the sum of T and U, that is,

E = T+U = 1
2
Iv · Iv− µ

r
(1.66)

The quantity E is called the specific mechanical energy of the spacecraft relative to
the inertial reference frame. The rate of change of the specific mechanical energy is
then given as

dE
dt
= d
dt

(
1
2
Iv · Iv− µ

r

)
= dT
dt
+ dU
dt
. (1.67)

Now because E is a scalar, the rate of change of E can be taken in any reference frame.
Suppose arbitrarily that the rate of change of E is taken in the inertial reference frame
I . Then the rate of change of E is given as

dE
dt
= dT
dt
+ dU
dt
=
Id
dt

(
1
2
Iv · Iv

)
−
Id
dt

(
µ
r

)
. (1.68)
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First, the rate of change of the specific kinetic energy in the inertial reference frame is
given as

dT
dt
= 1

2

(
Ia · Iv+ Iv · Ia

)
= 1

2

(
2Iv · Ia

)
= Ia · Iv, (1.69)

where it is noted that Ia = Id(Iv)/dt. Then, from the two-body differential equation of
Eq. (1.15), Ia = −µr/r 3 from which dT/dt can be re-written as

dT
dt
= − µ

r 3
r · Iv. (1.70)

Next, noting that r = [r ·r]1/2, the rate of change of the specific potential energy in the
inertial frame is given as

dU
dt
= d
dt

(
−µ
r

)
= d
dt

(
−µ[r · r]−1/2

)
= 1

2µ[r · r]−3/2
(
Iv · r+ Ir · Iv

)
= µ
[r · r]3/2

r · Iv = µ
r 3

r · Iv,
(1.71)

where it is noted that Iv = Idr/dt and [r · r]3/2 = r 3. Substituting the expressions for
dT/dt and dU/dt from Eqs. (1.70) and (1.71), respectively, the rate of change of the
specific mechanical energy is given as

dE
dt
= − µ

r 3
r · Iv+ µ

r 3
r · Iv = 0. (1.72)

Equation (1.72) states that the rate of change of the specific mechanical energy of the
spacecraft is zero which implies that

E = constant. (1.73)

Then, because E is constant, this constant can be obtained at any convenient point
on the orbit. Thus, arbitrarily choose to evaluate this constant using the conditions
at periapsis, where the conditions at periapsis are evaluated conveniently using a so

called perifocal basis
{
px,py ,pz

}
defined as follows:

px = e

‖e‖ =
e

e
,

pz =
Ih
‖Ih‖ =

Ih
h
,

py = pz × px.

(1.74)

Because the vectors e and Ih are fixed in the inertial reference frame I , it is seen that
the perifocal basis

{
px,py ,pz

}
is fixed in I . Next, let {ur ,uν ,uz} be a basis that is

fixed in a reference frame U and defined as

ur = r

‖r‖ =
r

r
,

uz = pz,
uν = uz × ur .

(1.75)

Figure 1.3 provides a schematic of the bases
{
px,py ,pz

}
and {ur ,uν ,uz}. As seen from

Fig. 1.3, ν is the angle from px to ur . Consequently, reference frame U (in which the
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basis {ur ,uν ,uz} is fixed) rotates with an angular rate ν̇ about the uz = pz–direction

relative to reference frame I (in which the basis
{
px,py ,pz

}
is fixed) which implies

that the angular velocity of reference frame U relative to the inertial reference frame
I is

IωU = ν̇uz. (1.76)

In terms of the basis {ur ,uν ,uz}, the position of the spacecraft relative to the planet

Figure 1.3 Two-dimensional projection showing the bases
{
px,py ,pz

}
and

{ur ,uν ,uz} that lie in the orbit plane for the two-body problem.

is given as
r = rur . (1.77)

Applying the transport theorem to the position r given in Eq. (1.77), the velocity of the
spacecraft as viewed by an observer in the inertial reference frame I is given as

Iv =
Idr

dt
=
Udr

dt
+ IωU × r = ṙur + ν̇uz × rur = ṙur + r ν̇uν (1.78)

Using the expression for Iv given Eq. (1.78), the specific kinetic energy is given as

T = 1
2
Iv · Iv = 1

2(ṙ
2 + r 2ν̇2) (1.79)

Now it is noted that

ṙ = dr
dt
= dr
dν
dν
dt

(1.80)

Taking the derivative of r in Eq. (1.42) with respect to ν gives

dr
dν
= pe sinν
(1+ e cosν)2

= p2e sinν
p(1+ e cosν)2

= r
2e sinν
p

. (1.81)

Furthermore, the specific angular momentum Ih defined in Eq. (1.17) can be expressed
in terms of the basis {ur ,uν ,uz} as

Ih = r× Iv = rur × (ṙur + r ν̇uν) = r 2ν̇uz = huz. (1.82)

which implies that

ν̇ = h
r 2

(1.83)
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Therefore, the rate of change of r is obtained as

ṙ = r
2e sinν
p

h
r 2
= he sinν

p
. (1.84)

The value of ṙ at periapsis (that is, the value of ṙ when ν = 0), is then given as

ṙ (ν = 0) =
[
dr
dt

]
ν=0
=
[
he sinν
p

]
ν=0

= 0. (1.85)

Consequently, the specific kinetic energy evaluated at the periapsis of the orbit is ob-
tained as

T(ν = 0) = 1
2

[Iv · Iv]ν=0 = 1
2r

2
p

(
h
r 2
p

)2

= h2

2r 2
p

(1.86)

Also, the specific potential energy at periapsis is given as

U(ν = 0) = − µ
rp
. (1.87)

Therefore, the specific mechanical energy can be written as

E = T+U = h2

2r 2
p
− µ
rp
. (1.88)

Then, noting from Eq. (1.43) that h2 = µp, Eq. (1.88) can be written as

E = µp
2r 2
p
− µ
rp
= µ
rp

(
p

2rp
− 1

)
= µ
rp
p − 2rp

2rp
. (1.89)

Then, substituting the results of Eqs. (1.52), and (1.55) into Eq. (1.89) gives

E = µ
rp
a(1− e2)− 2a(1− e)

2a(1− e) = µ
rp
(1+ e)(1− e)− 2(1− e)

1− e
= −µ(1− e)

2rp
= − µ(1− e)

2a(1− e) = −
µ

2a
.

(1.90)

Therefore, the specific mechanical energy reduces to

E = − µ
2a
. (1.91)

Now, Eq. (1.91) can be used to derive the following additional result that is often quite
useful. First, note that

Iv · Iv = v2, (1.92)

where v = ‖Iv‖ is the inertial speed. Therefore, the specific mechanical energy is given
as

E = v
2

2
− µ
r
= − µ

2a
. (1.93)

Solving Eq. (1.93) for v2 gives

v2 = µ
(

2
r
− 1
a

)
. (1.94)
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Equation (1.94) is called the vis-viva equation. From the vis-viva equation it can be
seen that the speed of the spacecraft at any point on the solution of the two-body
differential equation of Eq. (1.15) is given as

v = √µ
√

2
r
− 1
a
. (1.95)

1.4.3 Flight Path Angle

Another important quantity of the orbit is the flight path angle denoted γ. First, be-
cause the specific angular momentum lies along the direction uz where uz = pz and is
orthogonal to the orbit plane,

Ih = r× Iv = rvuz sinφ, (1.96)

where r is as given in Eq. (1.45), v is as given in Eq. (1.95), and φ is the angle between
r and Iv and is called the zenith angle. Taking the magnitude of Eq. (1.96) gives

h = ‖Ih‖ = ‖r× Iv‖ = rv sinφ. (1.97)

Now, let

γ = π
2
−φ. (1.98)

which implies that

φ = π
2
− γ. (1.99)

The angle γ is called the flight path angle. Both the zenith angle and the flight path
angle are shown in Fig. 1.4, where the directions ur and uν defined via the basis
{ur ,uν ,uz} in Eq. (1.75) are called, respectively, the local vertical and local horizon-
tal directions. It is seen that the zenith angle is defined as the angle from the local
vertical to the direction of the inertial velocity while the flight path angle is defined as
the angle from the local horizontal to the direction of the velocity.

Using Eq. (1.98) together with the fact that sinφ = sin(π/2− γ) = cosγ, Eq. (1.97)
becomes

h = rv cosγ. (1.100)

Next, taking the scalar product of r with Iv gives

r · Iv = ‖r‖‖Iv‖ cosφ = rv cosφ. (1.101)

Then, using the identity cosφ = cos(π/2− γ) = sinγ gives

r · Iv = rv sinγ. (1.102)

Combining the results in Eq. (1.100) and (1.102), the tangent of the flight path angle is
given as

tanγ = r · Iv
h
. (1.103)

Now it is noted that

r · Iv = 1
2
d
dt
(r · r) = 1

2
d
dt

(
r 2
)
= r ṙ (1.104)
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Figure 1.4 Zenith angle, φ, and flight path angle, γ, along with the local vertical and
local horizontal directions, ur and uν .

which implies that

tanγ = r ṙ
h
. (1.105)

Then, substituting the result of Eq. (1.84) into (1.105) gives

tanγ =
r
he sinν
p
h

= re sinν
p

. (1.106)

Then, substituting Eq. (1.45) into (1.106) gives

tanγ = e sinν
1+ e cosν

. (1.107)

Equation (1.107) provides a simple relationship for the tangent of the flightpath angle
in terms of the eccentricity and true anomaly. Now, because the zenith angle, φ, is the
angle between r and Iv, it follows that φ ∈ [0, π], that is,

0 ≤ φ ≤ π. (1.108)

Then, substituting the expression for the zenith angle in terms of the flight path angle,
Eq. (1.108) is given as

0 ≤ π
2
− γ ≤ π. (1.109)

which implies that

− π
2
≤ γ ≤ π

2
. (1.110)
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Therefore, γ ∈ [−pi/2, π/2]. Therefore, the flight path angle can be computed using
the standard inverse tangent as

γ = tan−1
(

e sinν
1+ e cosν

)
. (1.111)

Finally, it is noted from Eq. (1.111) that the flight path angle is zero when the true
anomaly is either zero or π , that is, the flight path angle is zero when the spacecraft
is at either the periapsis or the apoapsis of the orbit.

1.4.4 Period of an Orbit

Another important property of orbit equation is the period of the orbit. The orbital
period is derived via Kepler’s second law of planetary motion, namely, an equal area is
swept out by the orbit in equal time. In order to determine the relationship between
the area swept out by the ellipse and the time interval over which this area is swept out,
consider an incremental change in the true anomaly as shown in Fig. 1.5. Specifically,

Figure 1.5 Incremental change in true anomaly ν on an orbit defined by Eq. (1.45).

Fig. 1.5 shows the location S of the spacecraft on the orbit when the true anomaly
has a value ν and the location S′ of the spacecraft when the true anomaly has a value
ν + ∆ν . For sufficiently small ∆ν , the area ∆A enclosed by the triangle OSS′ is given
as

∆A ≈ 1
2
BH = 1

2
(r∆ν)r = 1

2
r 2∆ν, (1.112)

where B = r∆ν and H = r are the base and the height, respectively, of the triangle
OSS′. Therefore, over a small time increment ∆t,

∆A
∆t
≈ 1

2
r 2∆ν
∆t
. (1.113)

In the limit as ∆t → 0 Eq. (1.113) becomes

dA
dt
= 1

2
r 2dν
dt
. (1.114)

Note, from Eq. (1.83) that h = r 2ν̇ which implies that

dA
dt
= 1

2
h (1.115)
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Finally, because h is constant, Eq. (1.115), the rate of change of A is a constant which
implies that equal areas are swept out over equal times on an orbit, that is,

A(t2)−A(t1) = 1
2
h(t2 − t1). (1.116)

Equation (1.116) is referred to as Kepler’s second law. Kepler’s second law can now be
used to determine the orbital period of the spacecraft. First, rearranging Eq. (1.115)
gives

dt = 2
h
dA. (1.117)

Now let τ be the orbital period, that is, τ is the time it takes to traverse a true anomaly
of 2π . Furthermore, let A be the area swept out by the conic section in time τ . Then,
given that h is constant, Eq. (1.117) can be integrated to obtain

τ = 2
h
A, (1.118)

where A represents the area swept out as the spacecraft makes one orbital revolution
about the planet. Now note for an ellipse that

A = πab (1.119)

where a and b are the semi-major axis and semi-minor axis, respectively. Using the
result of Eq. (1.62) on page 16 in Eq. (1.119), the area of an ellipse can be written as

A = πa2
√

1− e2. (1.120)

Furthermore, substituting A from Eq. (1.120) into (1.118) gives

τ = 2πa2
√

1− e2

h
. (1.121)

Now it is noted that from Eqs. (1.52) and Eq. (1.43) that 1 − e2 = p/a and h = √µp,
respectively, which implies that

τ = 2πa2
√
p/a

h
= 2π

a3/2√p√µp (1.122)

Simplifying Eq. (1.122), the orbital period of the spacecraft is given as

τ = 2π

√
a3

µ
. (1.123)

1.5 Types of Orbits

In Section 1.4 several key properties of the orbit equation given in Eq. (1.45) were
derived. In this section, these properties will be further specialized to provide the
properties of the orbit based on the value of the orbital eccentricity. In particular, the
value of the orbital eccentricity states whether the orbit is an ellipse, a parabola, or an
hyperbola. Each of these cases is now considered.
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1.5.1 Elliptic Orbit: 0 ≤ e < 1

An elliptic orbit is one where 0 ≤ e < 1 (that is, the eccentricity is greater than or
equal to zero and strictly less than unity). The solution of equation given in Eq. (1.45)
for 0 ≤ e < 1 is an ellipse and is shown in Fig. 1.6. It is seen from Fig. 1.6 that the
properties of Eq. (1.45) all hold in their native forms for the case of an elliptic orbit.
First, it is seen for an ellipse that ν = 0 and ν = π correspond to the periapsis and
apoapsis of the orbit. Consequently, the periapsis and apoapsis radii are given exactly
as shown in Eqs. (1.46) and (1.47). Furthermore, it is seen from Eq. (1.93) that the
energy on an elliptic orbit is negative, that is,

E = − µ
2a
< 0 (1.124)

because a > 0 for an elliptic orbit. Finally, the orbital period of an elliptic orbit as
given in Eq. (1.123).

Figure 1.6 Elliptic orbit that arises from the solution of the orbit equation given in
Eq. (1.45) for the case where 0 ≤ e < 1.

1.5.2 Parabolic Orbit: e = 1

A parabolic orbit is one where e = 1 (that is, the eccentricity is exactly unity). The
solution of equation given in Eq. (1.45) for e = 1 is given as

r = p
1+ cosν

(1.125)
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and the parabolic trajectory corresponding to Eq. (1.125) is shown in Fig. 1.7. Substi-
tuting ν = 0 into Eq. (1.125), it is seen that the periapsis radius is given as

rp = p
1+ cos 0

= p
2
. (1.126)

Furthermore, substituting ν = π into Eq. (1.125), it is seen that the apoapsis radius is
given as

ra = p
1+ cosπ

= ∞ (1.127)

which implies that the apoapsis radius for a parabola is∞. Because the apoapsis radius
is infinite, the semi-major axis for a parabolic orbit is

a = rp + ra
2

= p/2+∞
2

= ∞ (1.128)

which implies that the energy on a parabolic orbit is

E = − µ
2a
= − µ

2 · ∞ = 0. (1.129)

Figure 1.7 Parabolic orbit that arises from the solution of the orbit equation given
in Eq. (1.45) for the case where e = 1.

1.5.3 Hyperbolic Orbit: e > 1

A hyperbolic orbit is one where e > 1 (that is, the eccentricity is strictly greater than
unity). The orbit equation for for e > 1 is the same as that given in Eq. (1.45), that is,

r = p
1+ e cosν

(1.130)

and the hyperbolic trajectory corresponding to Eq. (1.130) is shown in Fig. 1.8. Note
that a hyperbola consists of two curves. The first curve is the trajectory of the space-
craft with the focus at point O, where O is the location of the planet. The second curve
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is a vacant trajectory with a corresponding vacant focus at O′. Furthermore, because
e > 1, the radius approaches infinity for a value of ν = ν∞ < π , where ν∞ is obtained
by setting the denominator of Eq. (1.130) to zero. Thus, ν∞ is obtained by solving

1+ e cosν∞ = 0 (1.131)

from which ν∞ is obtained as

ν∞ = cos−1
(
−1
e

)
. (1.132)

The value of ν∞ can then be used to determine an angle β that defines the slopes of
the two asymptotes of the hyperbolic orbit. The angle β is given as

β = π − ν∞. (1.133)

Therefore,

cosβ = cos(π − ν∞) = cosπ cosν∞ + sinπ sinν∞ = − cosν∞ = 1
e

(1.134)

from which the angle β is obtained as

β = cos−1
(

1
e

)
. (1.135)

The angles ν∞ and β are shown in Fig. 1.8. Next, different from an elliptic orbit, the
vacant focus O′ lies to the right of the focus O (where, again, O is the location of the
planet). The fact that the vacant focus O′ lies to the right of the focus O (where the
planet is located) and e > 1 for a hyperbola, the periapsis and apoapsis radii are given
from Eqs. (1.46) and (1.47), respectively, as

rp = p
1+ e > 0, (1.136)

ra = p
1− e < 0. (1.137)

Then, because the apoapsis radius is less than zero for a hyperbolic orbit, the semi-
major axis for a hyperbolic orbit is

a = p
1− e2

< 0. (1.138)

It is noted, however that, consistent with Eq. (1.136), the periapsis radius for a hyper-
bolic orbit is given as

rp = a(1− e) > 0 (1.139)

while the semi-latus rectum is
p = a(1− e2) (1.140)

where it is noted that both rp and p are greater than zero because a is less than zero
while both 1− e and 1− e2 are negative. In other words, because a < 0 and e > 1 for
a hyperbolic orbit, the periapsis radius and the semi-latus rectum are both positive.
Moreover, from the geometry of the hyperbola it is the case that

c2 = a2 + b2 (1.141)
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where b is defined to be the semi-minor axis of the hyperbola as shown in Fig. 1.8. It
is also noted that, because a < 0, the energy on a hyperbolic orbit is given as

E = − µ
2a
> 0 (1.142)

Finally, the fact that a < 0 gives rise to the fact that the distance between the foci O
and O′ is −2ae while the distance between the periapsis and the apoapsis is −2a. As
stated, the geometry of the hyperbola is given in Fig. 1.8.

Figure 1.8 Hyperbolic orbit that arises from the solution of the orbit equation given
in Eq. (1.45) for the case where e > 1.
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Problems for Chapter 1

1–1 Consider the following two Earth orbits:

• Orbit 1: Periapsis Radius = rp1 = rp; Semi-Major Axis = a1.

• Orbit 2: Periapsis Radius = rp2 = rp; Semi-Major Axis = a2 > a1.

Using the information provided, determine the following information:

(a) The orbit that has the larger speed at periapsis.

(b) The orbit that has the larger speed at apoapsis.

1–2 A spacecraft is in an Earth orbit whose periapsis altitude is 500 km and whose
apoapsis altitude is 800 km. Assuming that the radius of the Earth is Re = 6378.145 km
and that the Earth gravitational parameter is µ = 398600 km3 · s−2, determine the
following quantities related to the orbit of the spacecraft:

(a) The semi-major axis.

(b) The eccentricity.

(c) The semi-latus rectum.

(d) The magnitude of the specific angular momentum.

(e) The speed of the spacecraft at periapsis and apoapsis.

1–3 Consider two equatorial orbits, A and B, about a planet. Suppose further that
both orbits share the same line of apsides, that the periapses of both orbits are located
at the same point (denoted P ), that the apoapsis radius of orbit A is smaller than the
apoapsis radius of orbit B, and that both orbits have the same semi-minor axes. The
goal is to be able to spend as much time as possible from a spacecraft visualizing a
pointQ fixed to the planet such that the direction OQ lies along the direction from the
planet to the apoapsis. Which of the two orbits will enable the spacecraft the longer
visualization time of point Q? Justify your answer.

1–4 Spacecraft 1 is in an equatorial circular Earth orbit with a radius r1. Spacecraft
2 is in a different equatorial Earth orbit from Spacecraft 1 with a periapsis speed vp2.
Assuming that the semi-major axes of the orbits of both spacecraft are the same, what
is the eccentricity of the orbit of Spacecraft 2 in terms of the information provided.

1–5 A spacecraft is in orbit about the Earth. At a given point on the orbit, the speed,
radius, and flight path angle of the spacecraft are 7.5 km · s−1, 9500 km, and 18 deg,
respectively. Determine the following quantities:

(a) The true anomaly.

(b) the eccentricity of the orbit.

(c) the orbital energy.
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1–6 Let I be a central body (planet) and assume that I is an inertial reference frame.
The position and velocity of a spacecraft relative to the center of I expressed in planet-
centered inertial coordinates at a time t0 are given in canonical units (that is, units
where µ = 1), respectively, as

[r]I = 1
20

 −12
−20

15

 ,
[Iv]I = 1

20

 16
−9

9

 .
Determine the inertial acceleration of the spacecraft at t0 in planet-centered inertial
coordinates.

1–7 Consider a spacecraft moving in an elliptic orbit. Determine the value of the true
anomaly ν such that the speed on the elliptic orbit at a radius r is equal to the speed
on a circular orbit of radius r .

1–8 Consider the definition of the flight path angle, γ, as given in Section 1.4.3. Fur-
thermore, let r and Iv be position and inertial velocity of a spacecraft relative to a
planet, respectively. Expressing all quantities in the basis {ur ,uν ,uz} as defined in
Eq. (1.75) derive the following:

(a) The result given in Eq. (1.107), that is, derive the expression

tanγ = e sinν
1+ e cosν

.

(b) The maximum and minimum values of the flight path angle on an orbit.

1–9 Let I be a central body (planet) and assume that I is an inertial reference frame.
The position of a spacecraft relative to the center of the planet and the inertial ve-
locity of the spacecraft expressed in planet-centered inertial coordinates at a time t0
are given in canonical units (that is, units where the gravitational parameter µ = 1),
respectively, as

[r]TI =
[

0 2 0
]
,
[
Iv
]T

I =
[
−1/

√
3
√

2/
√

3 0
]
.
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Determine the following quantities with respect to the orbit of the spacecraft relative
to the planet:

(a) The specific angular momentum, Ih.

(b) The eccentricity vector. e.

(c) That Ih · e = 0.

(d) The semi-latus rectum, p.

(e) The semi-major axis, a.

(f) The true anomaly at t0, ν0.

1–10 Recall from Eqs. (1.55) and (1.56) that the periapsis and apoapsis radii of the
orbit of a spacecraft are given as rp = a(1− e) and ra = a(1+ e), respectively. There-
fore, at some point on the orbit between periapsis and apoapsis the radius, r , must be
equal to the semi-major axis, a. Assuming a gravitational parameter µ for the planet,
determine

(a) The value of the true anomaly when r = a.

(b) The speed of the spacecraft at the point when r = a.

1–11 A spacecraft is in orbit relative to the Earth, E, and the Earth is considered
an inertial reference frame. The specific mechanical energy of the spacecraft is E =
−2× 108ft2 · s−2 and the orbital eccentricity is e = 0.2. Determine

(a) The magnitude of the specific angular momentum, h.

(b) The semi-latus rectum, p.

(c) The semi-major axis, a.

(d) The periapsis radius, rp.

(e) The apoapsis radius, ra.

1–12 An Earth-orbiting weather satellite has an orbital eccentricity e = 0.1 and a
periapsis altitude of 370 km. Determine the following quantities related to the orbit of
the spacecraft:

(a) The apoapsis altitude (that is, ha = ra − Re where Re = 6378.145 km is the radius
of the Earth).

(b) The specific mechanical energy, E.

(c) The magnitude of the specific angular momentum, h.

(d) The semi-latus rectum.

1–13 An unidentified Earth-orbiting space object is found to have an altitude of
4000 km and is moving with an inertial speed 800 m·s−1 at a flight path angle γ = 0.
Determine

(a) The specific mechanical energy, E.
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(b) The magnitude of the specific angular momentum, h.

(c) The semi-latus rectum, p.

(d) The periapsis radius, rp.

(e) The apoapsis radius, ra.

1–14 Let I be a central body (planet) and assume that I is an inertial reference frame.
The position and velocity of a spacecraft relative to the center of I expressed in planet-
centered inertial coordinates at a time t0 are given in canonical units (that is, units
where µ = 1), respectively, as

[r]TI =
[
−0.6 −1 0.75

]
,
[
Iv
]T

I =
[

0.8 −0.45 0.45
]
.

Determine the following quantities with respect to the orbit of the spacecraft relative
to the planet:

(a) The specific angular momentum, Ih.

(b) The eccentricity vector. e.

(c) That Ih · e = 0.

(d) The semi-major axis, a.

(e) The semi-latus rectum, p.

(f) The true anomaly at t0, ν0.

1–15 An extra-terrestrial object is found to be approaching Earth when its geocen-
tric radius is 403000 km, its true anomaly is 151 deg, and its Earth-relative speed is
2.25 km · s−1. Assuming that the Earth is approximated as an inertial reference frame
and that the gravitational parameter of the Earth is µ = 398600 km3 · s−2, determine
the following quantities related to the orbit of the object relative to the Earth:

(a) The eccentricity.

(b) The periapsis altitude.

(c) The periapsis speed.

1–16 Please answer true or false to each of the following statements related to the
properties of the two-body differential equation derived in class (assuming for simplic-
ity that the orbit is elliptic):

(a) The specific angular momentum is orthogonal to the eccentricity vector.

(b) The specific angular momentum lies in the orbit plane.

(c) The eccentricity vector lies in the orbit plane.

(d) The position of the spacecraft relative to the planet, r, is largest in magnitude when
r lies along the eccentricity vector.

(e) The specific mechanical energy of the orbit is E = µ(1− e
2)

2p
.
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Chapter 2

The Orbit in Space

2.1 Introduction

The focus of Chapter 1 was to derive the two-body differential equation and to describe
the key properties of the motion of a spacecraft in the orbital plane. In particular, the
orbit equation derived in Chapter 1 provides the solution of the two-body differential
equation from the perspective of the orbit plane. Using the solution of the two-body
differential equation led to the property that the orbit is a conic section, with the form
of the conic section being either a circle, ellipse, parabola, or hyperbola) depending
upon the value of the eccentricity of the orbit. While the information in the orbit
plane is essential, it provides only a two-dimensional representation of the motion of
a spacecraft. Note, however, that the spacecraft moves in three-dimensional Euclidean
space. Therefore, describing motion in the orbital plane is insufficient because the
orbital plane itself has an orientation in three-dimensions. Observing that a conic sec-
tion is a collection of more than three non-collinear points that lie a constant distance
from one another, the orbit is a rigid body and, thus, could have any orientation in
three-dimensional Euclidean space. Consequently, in order to determine the location
of the spacecraft in three-dimensional Euclidean space, it is necessary to know the size
and shape of the conic section, the orientation of the conic section in E3 relative to a
reference orientation, and the location of the spacecraft on the conic section.

This chapter describes those parameters required to provide a complete descrip-
tion of the orbit in three dimensions. In particular, the focus of this chapter will be
on the development of the classical orbital elements that define the size, shape, and
orientation of the orbit along with the location of the spacecraft on the orbit itself.
The classical orbital elements consist of six quantities called the semi-major axis, the
eccentricity, the longitude of the ascending node, the inclination, the argument of the
periapsis, and the true anomaly. These semi-major axis and eccentricity define the
size and shape of the orbit and were already defined in Chapter 1. The longitude of
the ascending node, the inclination, and the argument of the periapsis define a 3-1-3
Euler angle sequence that describes the orientation of the orbit in three-dimensional
Euclidean space. Finally, the true anomaly, which was also defined in Chapter 1, de-
scribes the location on the orbit relative to the eccenticity vector (which, as described
in Chapter 1, is a vector that is fixed in the orbital plane and lies along the direc-
tion from the focus of the orbit to the periapsis). Using the definitions developed in
this chapter, transformations are developed that enable computation of the classical



34 Chapter 2. The Orbit in Space

orbital elements from the position and inertial velocity of the spacecraft when the po-
sition and inertial velocity are expressed in planet-centered inertial (PCI) coordinates.
Conversely, transformations are developed that enable computation of the position
and inertial velocity in planet-centered inertial coordinates given the orbital elements.
Finally, a related goal is to describe a method that can be used in computer software
for performing the aforementioned computations.

2.2 Coordinate Systems

The first step in describing the orbit of a spacecraft in E3 is to define relevant coordi-
nate systems from which measurements can be taken in order to provide a quantitative
description of the parameters used to describe the orbit. In the context of the Earth,
which will be the basis for a quantitative description of the orbit of a spacecraft, the
following three coordinate systems, each of which is fixed in an inertial reference frame
I , are used to quantify the orbit of a spacecraft: (1) heliocentric-ecliptic coordinates;
(2) Earth-centered inertial (ECI) coordinates; and (3) perifocal coordinates. A detailed
description of each of these coordinate systems is now provided. It is noted for com-
pleteness that the methods developed in this section can be used with any central body
that can be approximated as an inertial reference frame, but for convenience the Earth
is used as the basis of the analysis.

2.2.1 Heliocentric-Ecliptic Coordinates

The first coordinate system used to quantify the orbit of a spacecraft in E3 is the
heliocentric-ecliptic coordinate system. The heliocentric-ecliptic coordinate system is
shown in Fig. 2.1 has its origin at the center of the Sun. Now, the Earth moves in
a near-circular orbit relative to the Sun. Moreover, the orbit swept out by the Earth
relative to the Sun forms what is known as the ecliptic plane. The Earth, however, is
tipped at an angle of approximately 23.44 deg relative to the ecliptic plane and, thus,
the equatorial plane of the Earth is also rotated by 23.44 deg relative to the ecliptic
plane. The equatorial plane of the Earth lies within what is known as the celestial
equator (that is, the equator of the Earth lies in the same plane as that of the celestial
equator). The celestial equator and the equatorial plane of the Earth together with the
tilt of the Earth relative to the ecliptic plane is shown in Fig. 2.2.

Suppose now the Sun is approximated as an inertial reference frame and the center
of the Sun is the point from which all distances are measured. Although using this
assumption the motion of the Earth is now observed relative to an inertial reference
frame (that inertial reference frame being the Sun), the choice of an inertially fixed
coordinate system is arbitrary, the only requirement being that any right-handed or-
thonormal basis chosen be fixed to the Sun. For convenience, the following inertially
fixed basis is chosen. First, let Xε be the unit vector that points from the Earth to the
Sun on the first day of spring as shown in Fig. 2.1. As seen from the Earth, the Sun
will lie directly over the First Point of Aries at the vernal equinox, and the Sun would
be said to be entering Aries at this instant of time. In other words, at the instant of
time when the Earth is located at the vernal equinox, the direction Xε points towards
a point known as the First Point of Aries (where the First Point of Aries is denoted �).
The vernal equinox is one of two instants of time where the celestial equator meets the
ecliptic plane (the other instant of time being the autumnal equinox).
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Figure 2.1 Heliocentric-ecliptic coordinate system based on the seasons of the Earth.
The unit vector Xε is defined as the direction from the Earth to the Sun when the Earth
is at the vernal equinox.

2.2.2 Earth-Centered Inertial (ECI) Coordinates

The second coordinate system that is used to quantify the orbit of a spacecraft in E3

is the Earth-centered inertial (ECI) coordinate system. The ECI coordinate system has
an origin located at the center of the Earth. The fundamental plane of motion is the
Earth equator (which, as stated above, is coincident with the celestial equator) while the
ecliptic plane is tilted by an angle of approximately 23.44 deg from the Earth equatorial
plane. The first principal direction in the ECI coordinate system is defined as Ix , where
Ix = Xε and it is recalled that Xε is the unit vector that points from the Earth to the
Sun on the first day of spring [which means that Ix points toward the First Point of
Aries (�)]. Next, the third principal direction is defined as Iz and lies in the direction
from the center of the Earth toward the North pole of the Earth. Finally, the second
principal direction, Iy , completes the right-handed system, that is, Iy = Iz × Ix . Now, it
is important to note that the ECI coordinate system is actually not fixed in an inertial
reference frame because all distances are measured from the center of the Earth and
the center of the Earth is not an inertially fixed point. For the purposes of a spacecraft
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Figure 2.2 Celestial equator and the ecliptic plane of the Earth.

in motion relative to the Earth, it is assumed that the duration over which observations
of the motion of a spacecraft is observed is sufficiently small so that the center of the

Earth does not move significantly. It is noted, however, that the basis
{
Ix, Iy , Iz

}
is

inertially fixed because the direction Ix is defined at a particular instant of time (in this
case, the instant of the vernal equinox) and Iz is inertially fixed because it is assumed
that the rotation of the Earth takes place about an inertially fixed direction. The ECI
coordinate system is shown schematically in Fig. 2.3.

2.2.3 Perifocal Coordinates

The third coordinate system that is used in the context of describing the orbit of
a spacecraft in E3 is the perifocal coordinate system. Similar to the ECI coordinate
system, the perifocal coordinate system has its origin at the center of the Earth. Next,

the perifocal basis
{
px,py ,pz

}
was already defined in in Eq. (1.74) of Chapter 1, where

px = e/‖e‖ = e/e, pz = Ih/‖Ih‖ = Ih/h, and py = pz × px . A two-dimensional
projection of the perifocal coordinates into the orbit plane is shown in Fig. 2.4.
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Figure 2.3 Earth-centered inertial (ECI) coordinates. The direction Ix is the same as
the direction X used to define the heliocentric-ecliptic coordinates shown in Fig. 2.1.

2.3 Orbital Elements

Consider again the Earth-centered inertial (ECI) coordinate system as defined in Section
2.2.2. Suppose further that the inertial reference frame I is taken to be one such that

the original of the Earth together with the basis
{
Ix, Iy , Iz

}
as defined Section 2.2.2

are fixed in I . In the study of the two-body problem as given in Chapter 1, it was
shown that when the planet was considered to be the inertial reference frame I that
the vectors Ih and e were shown to be fixed in I . Suppose now that a third vector fixed
in I , denoted n, is defined as

n = Iz × Ih. (2.1)

It can be seen that, because Iz and Ih are each fixed in I , that n must also be fixed in
I . The vectors Ih, e, and n are now used to define a set of six quantities called the
orbital elements where the orbital elements are used to parameterize the location of a
spacecraft in orbit relative to a planet (in this case that planet is the Earth). The six
orbital elements are given as follows:

(i) a, semi-major axis: a constant that defines the size of the orbit;

(ii) e, eccentricity: a constant that defines the shape of the orbit;

(iii) Ω, longitude of the ascending node: a constant that defines the angle between the
first principal direction Ix and the line of nodes;

(iv) i, orbital inclination: a constant that defines the angle between the third principal
direction Iz and specific angular momentum, Ih;

(v) ω, argument of the periapsis: the angle from between the line of nodes and the
eccentricity vector;

(vi) ν , true anomaly: the angle from the eccentricity vector to the position of the
spacecraft relative to the planet.
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Figure 2.4 Perifocal coordinates shown as a two-dimensional into the orbit plane.

Figure 2.5 provides a schematic of the six orbital elements visualized meausred rela-
tive to the ECI coordinate system described in Section 2.2.2. Using the aforementioned
description of the orbital elements, in the next section a method is derived for com-
puting the orbital elements given the position and velocity measured in terms of the
ECI coordinate system.

2.4 Determining Orbital Elements from Position and Veloc-
ity

Using the position and inertial velocity of spacecraft, denoted r and Iv, respectively,
the orbital elements are now computed. First, recall from Eq. 1.17 that the specific
angular momentum is given as

Ih = r× Iv. (2.2)

The semi-latus rectum is then obtained as

p = h
2

µ
, (2.3)

where h = ‖Ih‖. Using the semi-latus rectum from Eq. (2.3), the semi-major axis is
then obtained as

a = p
1− e2

. (2.4)

Next, the eccentricity vector is given from Eq. (1.33) as

e =
Iv× Ih
µ

− r

r
, (2.5)
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Figure 2.5 Schematic of orbital elements (a, e,Ω, i,ω, ν) relative to the Earth-
centered inertial (ECI) coordinate system described in Section 2.2.2.

where r = ‖r‖. The eccentricity of the orbit is then given as

e = ‖e‖. (2.6)

Next, the longitude of the ascending node, Ω, is defined as the angle from Ix to the
line of nodes, where the line of nodes is obtained from Eq. (2.1) as

n = Iz × Ih. (2.7)

Because n lies in the
{
Ix, Iy

}
–plane, it is seen that the tangent of the longitude of the

ascending node is obtained as

tanΩ = n · Iy
n · Ix

= n · Iy
n · Ix

. (2.8)

In order to obtain a value of Ω that is valid for all four quadrants, it is necessary to
compute the inverse tangent of Eq. (2.8) using a four-quadrant inverse tangent. In
terms of the four-quadrant inverse tangent, the longitude of the ascending node Ω is
computed as

Ω = tan−1(n · Iy ,n · Ix). (2.9)

Now, it is noted that the angle Ω obtained in Eq. (2.9) will lie on the interval [−π,π]
(that is Ω ∈ [−π,π]). Generally speaking, however, it is desirable for the angle Ω to lie
on the interval [0,2π]. In order to ensure that Ω ∈ [0,2π], is it necessary to check the
sign of the angle Ω obtained in Eq. (2.9). If the sign of Ω is negative, then 2π is added
to the result. This additional check on Ω is performed as follows:

if Ω < 0 then Ω = Ω + 2π. (2.10)
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where, it is noted again that the additional check in Eq. (2.10) is included in order
ensure that Ω ∈ [0,2π].

Next, the inclination, i, is the angle from Iz to Ih. In order to compute the inclination
it is necessary to decompose the specific angular momentum Ih into a component
along Iz and a component orthogonal to Iz. The component of Ih lies along a a vector

b (see Fig. 2.6), where b lie in the
{
Ix, Iy

}
plane and is orthogonal to the line of nodes,

n. Consequently, the vector b is given as

b = n× Iz. (2.11)

Note, however, that because n is not a unit vector, the b is not a unit either. Thus, b
must be normalized to be a unit vector as

u = b

‖b‖ =
n× Iz
‖n× Iz‖ . (2.12)

Now, because n and Iz are orthogonal to one another, it follows that

‖n× Iz‖ = ‖n‖ · ‖Iz‖ = ‖n‖ = n. (2.13)

Substituting the result of Eq. (2.13) into (2.12), the unit vector u is given as

u = n× Iz
n

. (2.14)

Note that the vectors Iz and u form a plane in which the specific angular momentum
Ih lies such that i is the angle from Iz to Ih. Using Fig. 2.6 as a guide, it is seen that
the tangent of the inclination is given as

tan i =
Ih · u
Ih · Iz

=
Ih · n× Iz

n
Ih · Iz

(2.15)

Then, because n might be zero, the numerator and nominator of Eq. (2.15) are multi-
plied by n to give

tan i =
Ih · [n× Iz]
n
[Ih · Iz

] (2.16)

The inclination is then obtained using a four-quadrant inverse tangent as

i = tan−1
(Ih · [n× Iz],n[Ih · Iz]

)
. (2.17)

It is noted in Eq. (2.17) that, unlike the case for the longitude of the ascending node,
because i ∈ [0, π ] it is not necessary to change the signs of the arguments in the
four-quadrant inverse tangent function of Eq. (2.17).

Next, the argument of the periapsis,ω, is the angle from n to e. Note, however, that
n and e are not orthogonal to one another as shown in Fig. 2.7. In order to compute
the argument of the periapsis, it is useful to construct the following right-handed
orthonormal basis:

un = n

‖n‖ =
n

n
,

uh =
Ih
h
,

uhn = uh × un =
Ih
h
× n

n
=
Ih× n

hn

(2.18)
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Figure 2.6 Decomposition of specific angular momentum Ih into components along
Iz and orthogonal to Iz in order to determine the inclination.

where n = ‖n‖. Figure 2.7 then shows the components of the eccentricity vector along
the directions uh and uhn. From Fig. 2.7 it is seen that the tangent of the argument of
the periapsis is given as

tanω =
e ·
[ Ih× n

hn

]
e · n

n

. (2.19)

Then, because either h or n could be zero, the numerator and denominator of Eq. (2.19)
are multiplied by hn to give

tanω = e · [Ih× n]
h[e · n]

. (2.20)

The argument of the periapsis is then obtained from the four-quadrant inverse tangent
as

ω = tan−1
(
e · [Ih× n], h[e · n]

)
. (2.21)

Now, as was the case for the longitude of the ascending node, the angle ω obtained
in Eq. (2.21) will lie on the interval [−π,π] (that is ω ∈ [−π,π]). Generally speaking,
however, it is desirable for the angleω to lie on the interval [0,2π]. In order to ensure
thatω ∈ [0,2π], is it necessary to check the sign of the angle obtained in Eq. (2.21). If
the sign of ω is negative, then 2π is added to the result. This additional check on ω
is performed as follows:

if ω < 0 then ω =ω+ 2π. (2.22)

where, it is noted again that the additional check in Eq. (2.22) is included in order
ensure that ω ∈ [0,2π].

Finally, the true anomaly, ν , is the angle from e to r. Note, however, that e and r
are not orthogonal to one another as shown in Fig. 2.8. Now, it is noted that the true
anomaly can be computed most conveniently using the previously defined perifocal

basis
{
px,py ,pz

}
as defined in Eq. (1.74) on page 17. The perifocal basis is restated
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Figure 2.7 Decomposition of the eccentricity vector e into components along the
directions of n and Ih× n in order to determine the argument of the periapsis.

from Eq. (1.74) as

px = e

‖e‖ =
e

e
,

pz =
Ih
‖Ih‖ =

Ih
h
,

py = pz × px.

(2.23)

Figure 2.8 shows the components of the spacecraft position r along the directions px
and py . Using Fig. 2.8 as a guide, it is seen that the tangent of the true anomaly is
given

tanν = r · py
r · px

. (2.24)

While, while it seems that the true anomaly could be computed via a four-quadrant in-
verse tangent (in the same manner that was used to compute Ω, i, andω), it turns out
computing ν requires that Eq. (2.24) be manipulated into a different form. First, be-
cause px lies along e and pz lies along Ih, it follows that py lies along Ih×e. Therefore,
the perifocal basis can be written as

px = e

e
,

pz =
Ih
h
,

py = pz × px =
Ih
h
× e

e
=
Ih× e

he
.

(2.25)

Consequently, Eq. (2.24) can be written as

tanν =
r ·

Ih× e

he
r · e

e

. (2.26)
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Multiplying the numerator and denominator of Eq. (2.26) by he gives

tanν = r · [Ih× e]
h[r · e]

. (2.27)

The true anomaly is then obtained from the four-quadrant inverse tangent as

ν = tan−1
(
r · [Ih× e], h[r · e]

)
, (2.28)

Generally speaking, however, it is desirable for the angle ν to lie on the interval [0,2π].
In order to ensure that ν ∈ [0,2π], is it necessary to check the sign of the angle
obtained in Eq. (2.28). If the sign of ν is negative, then 2π is added to the result. This
additional check on ν is performed as follows:

if ν < 0 then ν = ν + 2π. (2.29)

where, it is noted again that the additional check in Eq. (2.29) is included in order
ensure that ν ∈ [0,2π].

Figure 2.8 Decomposition of the spacecraft position vector r into components along
the directions of e and Ih× e in order to determine the true anomaly.

2.5 Determining Position and Velocity from Orbital Elements

In Section 2.4 a method was developed for determining orbital elements of a spacecraft
in moton relative to a planet given the position and the inertial velocity of the space-
craft. In this section the inverse problem is considered, namely, given the orbital ele-
ments relative to a planet the objective is to develop a method that determines the po-
sition and inertial velocity of the spacecraft. Consider again the ECI coordinate system
as defined in Section 2.2.2. Suppose now that the orbital elements (a, e,Ω, i,ω,nu)
relative to the Earth are known for the spacecraft under consideration and that it is
desired to determine the position r and the inertial velocity Iv expressed in the ECI

coordinate system defined by the basis E =
{
Ix, Iy , Iz

}
. The method developed in this
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section is based on first expressing r and Iv in the perifocal basis P =
{
px,py ,pz

}
and

then transforming the components of these two vectors to the ECI basis E =
{
Ix, Iy , Iz

}
.

In order to develop this method a transformation from the perifocal basis P to the ECI
basis I must be developed.

Let TIP ∈ R3×3 be the matrix that transforms components of a vector expressed in

the perifocal basis P =
{
px,py ,pz

}
to the ECI basis I =

{
Ix, Iy , Iz

}
. Now it is known

that the perifocal basis P is fixed in the orbit and that this basis has been obtained
through the three transformations by the angles Ω, i, and ω. Moreover, it is known
that these three transformations defined by the angles (Ω, i,ω) form a 3− 1− 3 Euler
angle sequence where the product of the three transformation matrices lead to the
overall transformation from the perifocal basis P to the ECI basis I . The intermediate
transformations that correspond to the 3 − 1 − 3 Euler angle sequence defined by
(Ω, i,ω) are given as follows:

(i) Transformation 1: “3”-axis transformation by the angle Ω;

(ii) Transformation 2: “1”-axis (resulting from Transformation 1) by the angle i;

(iii) Transformation 3: “3”-axis (resulting from Transformation 2) by the angle ω;

Thus, the components of any vector expressed in the perifocal basis is transformed a
new set of components in the ECI basis via the product of the three aforementioned
transformations.

2.5.1 Transformation 1 About “3”-Axis via Angle Ω

nx = cosΩ Ix + sinΩ Iy ,
ny = − sinΩ Ix + cosΩ Iy ,
nz = Iz.

(2.30)

A schematic of the relationship between the bases N and I is given in Fig. 2.9. It is seen

Figure 2.9 Transformation 1 about “3” axis via the longitude of the ascending node,

Ω, relating the basisN =
{
nx,ny ,nz

}
to the basis I =

{
Ix, Iy , Iz

}
.

from that Eq. (2.30) that the three basis vectors nx , ny , and nz expressed in the basis
I are given as

[nx]I =
 cosΩ

sinΩ
0

 , [
ny
]
I =

 − sinΩ
cosΩ
0

 , [nz]I =
 0

0
1

 , (2.31)
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whereas the three basis vectors nx , ny , and nz expressed in the basisN are given as

[nx]N =
 1

0
0

 , [
ny
]
N =

 0
1
0

 , [nz]N =
 0

0
1

 , (2.32)

Using the result of Eqs. (2.31) and (2.32), the matrix that transforms components of a
vector from the basisN to the basis I is given as

TIN =
 cosΩ − sinΩ 0

sinΩ cosΩ 0
0 0 1

 . (2.33)

In other words, given a vector b expressed in the basis N , denoted [b]N , that same
vector b expressed in the basis I , denoted [b]I is related to [b]N as

[b]I = TIN [b]N . (2.34)

2.5.2 Transformation 2: “1”-Axis via Angle i

Let Q =
{
qx,qy ,qz

}
be a right-handed orthonormal basis that is related to the basis

N =
{
nX ,ny ,nz

}
as follows:

qx = nx,
qy = cos i ny + sin i nz,
qz = − sin i ny + cos i nz,

(2.35)

A schematic of the relationship between the bases Q and N is given in Fig. 2.10. It is

Figure 2.10 Transformation 2 about “1” axis (that results from first transformation)

via the inclination, i, relating the basis
{
qx,qy ,qz

}
to the basis

{
nx,ny ,nz

}
.

seen from that Eq. (2.35) that the three basis vectors qx , qy , and qz expressed in the
basisN are given as

[qx]N =
 1

0
0

 , [
qy
]
N =

 0
cos i
sin i

 , [qz]N =
 0
− sin i

cos i

 , (2.36)
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whereas the three basis vectors qx , qy , and qz expressed in the basis Q are given as

[qx]Q =
 1

0
0

 , [
qy
]
Q =

 0
1
0

 , [qz]Q =
 0

0
1

 , (2.37)

Using the result of Eqs. (2.36) and (2.37), the matrix that transforms components of a
vector from the basis Q to the basisN is given as

TNQ =
 1 0 0

0 cos i − sin i
0 sin i cos i

 . (2.38)

In other words, given a vector b expressed in the basis Q, denoted [b]Q, that same
vector b expressed in the basisN , denoted [b]N is related to [b]Q as

[b]N = TNQ [b]Q . (2.39)

2.5.3 Transformation 3: “3”-Axis via Angle ω

Let P =
{
px,py ,pz

}
be a right-handed orthonormal basis that is related to the basis

Q =
{
qX ,qy ,qz

}
as follows:

px = cosω qx + sinω qy ,
py = − sinω qx + cosω qy ,
pz = qz.

(2.40)

A schematic of the relationship between the bases P and Q is given in Fig. 2.11. It is

Figure 2.11 Transformation 3 about “3” axis (that results from second transforma-

tion) via the inclination, ω, relating the basis
{
px,py ,pz

}
to the basis

{
qx,qy ,qz

}
.

seen from that Eq. (2.40) that the three basis vectors px , py , and pz expressed in the
basis Q are given as

[px]Q =
 cosω

sinω
0

 , [
py
]
Q =

 − sinω
cosω
0

 , [pz]Q =
 0

0
1

 , (2.41)
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whereas the three basis vectors px , py , and pz expressed in the basis P are given as

[px]P =
 1

0
0

 , [
py
]
P =

 0
1
0

 , [pz]P =
 0

0
1

 , (2.42)

Using the result of Eqs. (2.41) and (2.42), the matrix that transforms components of a
vector from the basis P to the basis Q is given as

TQP =
 cosω − sinω 0

sinω cosω 0
0 0 1

 (2.43)

In other words, given a vector b expressed in the basis P, denoted [b]P , that same
vector b expressed in the basis Q, denoted [b]Q is related to [b]P as

[b]Q = TQP [b]P . (2.44)

2.5.4 Perifocal to Earth-Centered Inertial Transformation

The three transformations described in Sections 2.5.1–2.5.3 are now used to determine
the transformation of the components of a vector expressed in the perifocal basis P to
components of that same vector expressed in the ECI basis I . The transformation of
the vector components from P to I is given by taking the product of the three transfor-
mations given in Eqs. (2.44)–2.34. Substituting the result of Eq. (2.44) into (2.39) and
substituting that result into Eq. (2.34) gives

[b]I = TINTNQ TQP [b]P , (2.45)

where the matrices TIN , TNQ , and TQP are defined in Eqs. (2.33), (2.38), and (2.43), re-
spectively. Therefore, the matrix that transforms components of a vector expressed in
the perifocal basis to components of the vector expressed in the ECI basis is given as

TIP = TINTNQ TQP , (2.46)

and will be used subsequently to compute the position and inertial velocity of the
spacecraft in the ECI basis.

2.5.5 Position and Inertial Velocity in Perifocal Basis

The method for determining position and velocity in the ECI basis is to first express
both vectors in the perifocal basis and then to transform the components of these
vectors in the perifocal basis to the ECI basis. Recall from Eqs. (1.77) and (1.78) on
page 18 that the spacecraft position and inertial velocity can be written, respectively,
as

r = rur , (2.47)
Iv = ṙur + r ν̇uν . (2.48)
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where U = {ur ,uν ,uz} is a basis that is rotated by the angle ν relative to the perifocal

basis P =
{
px,py ,pz

}
. Therefore, the basis U is related to the basis P as

ur = cosνpx + sinνpy ,
uν = − sinνpx + cosνpy ,

(2.49)

Equation (2.49) can then be used to derive expressions for r and Iv. First, using
Eq. (2.47), the position of the spacecraft can be expressed in the perifocal basis as

r = r cosνpx + r sinνpy . (2.50)

which implies that

[r]P =
 r cosν
r sinν

0

 . (2.51)

Next, the expressions for ν̇ and ṙ from Eqs. (1.83) and (1.84), respectively, on pages 18
and 19 can be substituted into Eq. (2.48) to obtain

Iv = pe sinν
(1+ e cosν)2

ν̇ur + p
1+ e cosν

ν̇uν

= p2e sinν
p(1+ e cosν)2

h
r 2

ur + r hr 2
uν

= r
2e sinν
p

h
r 2

ur + hr uν

= eh sinν
p

ur + hr uν

= e
√µp sinν
p

ur + h(1+ e cosν)
p

uν

= e
√µp sinν
p

ur +
√µp(1+ e cosν)

p
uν

=
√
µ
p
[e sinνur + (1+ e cosν)uν].

(2.52)

where the identity p = h2/µ from Eq. (2.3) on page 38 has been used in Eq. (2.52).
Then, substituting Eq. (2.49) into (2.52) gives

Iv =
√
µ
p
[e sinν(cosνpx + sinνpy)+ (1+ e cosν)(− sinνpx + cosνpy)]

=
√
µ
p
[e sinν cosνpx + e sin2 νpy − sinνpx − e cosν sinνpx

+ cosνpy + e cos2 νpy)]

=
√
µ
p
[− sinνpx + (e+ cosν)py].

(2.53)
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Therefore, the inertial velocity expressed in the perifocal basis P is given as

[
Iv
]
P =

√
µ
p

 − sinν
e+ cosν

0

 (2.54)

2.5.6 Position and Inertial Velocity in Earth-Centered Inertial Basis

The results of Sections 2.5.1–2.5.5 can now be used to determine the position and
inertial velocity of the spacecraft expressed in the Earth-centered inertial (ECI) basis.
First, using the perifocal to ECI transformation given in Eq. (2.46) together with the
spacecraft position expressed in the perifocal basis as given in Eq. (2.51), the position
and inertial velocity of the spacecraft in the ECI basis are given, repectively, as

[r]I = TIP [r]P , (2.55)[
Iv
]
I = TIP

[
Iv
]
P . (2.56)

(2.57)

It is important to note in Eqs. (2.55) and (2.56) that the transformation matrix TIP is a

composite transformation arising from the product of the matrices TIN , TNQ , and TQP as
given in Eq. (2.46). Finally, it is noted again that the individual transformation matrices
TIN , TNQ , and TQP are functions of the longitude of the ascending node, Ω, the orbital
inclination, i, and the argument of the periapsis, ω.
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Problems for Chapter 2

2–1 Using the results derived in Section 2.4, develop a MATLAB function that takes
the spacecraft position and inertial velocity expressed in planet-centered inertial (PCI)
coordinates, denoted I , along with the planet gravitational parameter as inputs and
produces the six orbital elements as outputs. The inputs to the code should be two
column vectors, one that contains the position, [r]I , and another that contains the
inertial velocity,

[Iv]I , and a scalar that contains the gravitational parameter, µ. The
inputs [r]I and

[Iv]I should have the form

[r]I =
 xy
z

 ,
[Iv]I =

 vxvy
vz

 .
The output of the code should be a six-dimensional column vector that contains the
orbital elements in the order of the output orbital elements should be the same as the
order given in this chapter, namely, the output should be a column vector of the form

Θ =



a
e
Ω
i
ω
ν

 .

The MATLAB function should be set up so that it could be provided to an independent
user of the code and produce the required outputs given the required inputs in the
format stated.

2–2 Using the results derived in Section 2.5, develop a MATLAB function that takes
as inputs the six orbital elements and the planet gravitational parameter and pro-
duces as outputs the position and inertial velocity of the spacecraft expressed in a
planet-centered inertial (PCI) coordinate system. The input orbital elements should be
a column vector of the form

Θ =



a
e
Ω
i
ω
ν

 .

The outputs of the code should be two column vectors, one that contains the position,
[r]I and another that contains the inertial velocity,

[Iv]I . The outputs [r]I and
[Iv]I

should have the form

[r]I =
 xy
z

 ,
[Iv]I =

 vxvy
vz

 .
The MATLAB function should be set up so that it could be provided to an independent
user of the code and produce the required outputs given the required inputs in the
format stated.
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2–3 While the orbital elements are defined for most cases, in certain cases one or
more of the orbital elements is not well defined. Revisiting the results of this chapter,
determine those cases where each orbital element may not be well defined, and provide
a justification as to why that orbital element is not defined for that particular case.

2–4 Show that the rates of change of the specific angular momentum, Ih, the eccen-
tricity vector e, and the line of nodes, n associated with the orbit of a spacecraft relative
to a planet I are zero when the planet is considered an inertial reference frame and all
distances are measured relative to the center of the planet.

2–5 The position and inertial velocity of an asteroid relative to the Sun S with µ = 1
(that is, the gravitational parameter of the planet is unity) at a time t0 are given are
given, respectively, as

[r]S =
 0.7

0.6
0.3

 AU ,
[Sv]S =

 −0.8
0.8
0

 AU · TU−1.

Determine

(a) The six orbital elements for the orbit of the asteroid.

(b) The orbital period.

(c) The semi-latus rectum.

(d) The specific angular momentum and the magnitude of the specific angular momen-
tum.

(e) The specific mechanical energy.

Is the asteroid potentially hazardous to Earth, that is, could the asteroid impact the
Earth?

2–6 Using the orbital elements obtained in Question 2–5, determine the position and
inertial velocity of the spacecraft in Sun-centered inertial (SCI) coordinates. Hint: the
result should be the data that was provided in Question 2–5.

2–7 Consider a spacecraft in orbit relative to the Earth E where the Earth is considered
an inertial reference frame. Let the orbital elements of the orbit of the spacecraft be
given as

a = 15307.548 km,
e = 0.7,
Ω = 194 deg,
i = 39 deg,
ω = 85 deg,
ν = 48 deg,

where µ = 398600 km3 · s−2. Determine the position and inertial velocity of the space-
craft expressed in Earth-centered inertial (ECI) coordinates.
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2–8 Consider a spacecraft in orbit relative to the Earth E where the Earth is considered
an inertial reference frame. Let the orbital elements of the orbit of the spacecraft be
given as

a = 19133.333 km,
e = 0.5,
Ω = 30 deg,
i = 45 deg,
ω = 45 deg,
ν = 0 deg,

where µ = 398600 km3 · s−2. Determine the position and inertial velocity of the space-
craft expressed in Earth-centered inertial (ECI) coordinates.

2–9 Consider a spacecraft in orbit relative to the Earth E where the Earth is considered
an inertial reference frame. Suppose that the semi-major axis and the true anomaly of
the spacecraft orbit are given, respectively, as

a = 20000 km,
e = 0.45,
Ω = 59 deg,
i = 27 deg,
ω = 94 deg,
ν = 58 deg,

where µ = 398600 km3 · s−2. Determine the position and inertial velocity of the space-
craft expressed in Earth-centered inertial (ECI) coordinates.

2–10 Consider a spacecraft in orbit relative to a planet I where the planet is consid-
ered an inertial reference frame. Let the orbital elements of the orbit of the spacecraft
be given in canonical units (that is, µ = 1)

a = 1.6,
e = 0.4,
Ω = 287 deg,
i = 46 deg,
ω = 28 deg,
ν = 139 deg,

Determine the position and inertial velocity of the spacecraft expressed in planet-
centered inertial (PCI) coordinates.



Chapter 3

The Orbit as a Function of Time

3.1 Introduction

Chapters 1 and 2 developed the properties of the orbit as a function of the location
of the spacecraft on the orbit, where the location was defined by a quantity called
the true anomaly, where the true anomaly is the angle between the eccentricity vector
(that lies along the direction from the focus of the orbit to the periapsis of the orbit)
and the direction of the spacecraft position. The description of the orbit in space was
divided into two parts. Chapter 1 focused on the two-dimensional representation of
location of the spacecraft on an orbit (that is, Chapter 1 focused on the properties of
the location of the spacecraft in the orbital plane), while Chapter 2 focused on a three-
dimensional representation of the orbit, where the three dimensional parameterization
employed the classical orbital elements. While the development in Chapters 1 and 2
provided a representation of the motion of the spacecraft in terms of the location
of the spacecraft, excluded from Chapters 1 and 2 was the location of the orbit as a
function of time.

The objective of this chapter is provide an approach for determining the location of
a spacecraft on an orbit as a functio of time. The approach developed in this chapter
relies on an angle called the eccentric anomaly, where the eccentric anomaly is defined
as the angle from the center of an elliptic orbit to a point on a circle that circumscribes
the ellipse and is tangent to the ellipse at the periapis and the apoapsis of the orbit.
The definition of the eccentric anomaly is then used to derive a relationship between
the eccentric anomaly and the true anomaly. This relationship provides the ability to
determine the true anomaly at any point on the orbit if the eccentric anomaly can be
determined at that same point on the orbit. Then, using Kepler’s second law (which
states that equal areas on an orbit are swept out in equal time), a relationship, known
as Kepler’s equation, is derived between the eccentric anomaly and time elapsed on the
orbit since the instant that the spacecraft was located at the periapsis of the orbit. A
more general version of Kepler’s equation is then derived for cases where the space-
craft may have crossed periapsis one or more times en route from an initial point on
an orbit to a terminal point on the orbit. It is then discussed that, for the case where
it is desired to determine the location of a spacecraft at a later time on an orbit given
the amount of time that has elapsed from an initial time, Kepler’s equation cannot be
solved analytically for the eccentric anomaly and, thus, the eccentric anomaly must be
determined iteratively. An iterative procedure that employs Newton’s method is then
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described for determining the eccentric anomaly which, in turn, enables determining
the true anomaly. Because the first five orbital elements are constant (as described in
Chapter 2), once the true anomaly at a later point in time is known the orbital elements
can be tranformed to obtain the position and inertial velocity at that later time on the
orbit.

3.2 Eccentric Anomaly as a Function of True Anomaly

The first step in being able to determine the location on an orbit given an elapsed time
from a reference time is to define a new quantity called the eccentric anomaly denoted
E. In order to define the eccentric anomaly, first consider a circle of radius a (where a
is the semi-major axis of the orbit) with a center C that circumscribes the orbit and is
tangent to the orbit at periapsis and apoapsis as shown in Fig. 3.1. Next, as shown in
Fig. 3.1, let A be the point on the aforementioned circle such that the line that passes
through A and S (where S is the location of the spacecraft) intersects the major axis
at point D (where the line segment AD lies orthogonal to the line segment CD). The
eccentric anomaly is then defined as the angle from the direction of periapsis (that is,
the direction along the eccentricity vector e to the direction of CA. Figure 3.1 shows
the eccentric anomaly along with the true anomaly.

Using the definition of the eccentric anomaly, E, the next objective is to determine
a relationship between E and the true anomaly, ν . Consider again Fig. 3.1 and let x
and y be the distances from C to D and D to S, respectively. It is seen from Fig. 3.1
that

x = a cosE, (3.1)

y = b sinE, (3.2)

where b is the semi-minor axis and is the radius of a circle whose center lies at C and is
tangent to the orbit at the points where E takes on the values π/2 and 3π/2). Solving
Eqs. (3.1) and (3.2) for cosE and sinE gives

cosE = x
a
, (3.3)

sinE = y
b
. (3.4)

Suppose now that the distances from C to D, C to O, and O to D are denoted, re-
spectively, as CD, CO, and OD. First, it is seen from Fig. 3.1 that CO = ae. Second,
OD = a cosE. Therefore, OD = CD − CO, that is,

OD = CD − CO = a cosE − ae = a(cosE − e). (3.5)

Next, the distance from D to S, denoted DS, is given as

DS = b sinE. (3.6)

Then, noting that the the line segments OD and DS are orthogonal to one another, the
distance r from O to S, denoted OS, is obtained from the Pythagorean theorem as

r 2 = OS2 = OD2 +DS2 = a2(cosE − e)2 + b2 sin2 E. (3.7)
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Figure 3.1 Schematic showing the relationship between the eccentric anomaly, E,
and the true anomaly, ν , for an elliptic orbit.

Note, however, that the eccentricity of the orbit is given in terms of the semi-major
and semi-minor axes as

e =
√

1− b
2

a2
(3.8)

which implies that
b2 = a2(1− e2). (3.9)

Substituting the result of Eq. (3.9) into (3.7) gives

r 2 = a2(cosE − e)2 + a2(1− e2) sin2 E

= a2
[
cos2 E − 2e cosE + e2 + (1− e2) sin2 E

]
= a2

[
cos2 E − 2e cosE + e2 + (1− e2)(1− cos2 E)

]
= a2

[
cos2 E − 2e cosE + e2 + (1− e2)− (1− e2) cos2 E

]
= a2

[
1− 2e cosE + e2 cos2 E

]
= a2 (1− e cosE)2

(3.10)
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which implies that

r = a(1− e cosE). (3.11)

Next, it is seen from Fig. 3.1 that the distance x is given as

x = ae+ r cosν = a cosE (3.12)

which, from Eq. (3.11), gives

a cosE = ae+ a(1− e cosE) cosν. (3.13)

Solving Eq. (3.13) for cosν gives

cosν = cosE − e
1− e cosE

. (3.14)

Then, the sine of the true anomaly can be obtained from the identity

sin2 ν = 1− cos2 ν = 1−
[

cosE − e
1− e cosE

]2

=
[

1− e cosE
1− e cosE

]2

−
[

cosE − e
1− e cosE

]2

= 1− 2e cosE + e2 cos2 E
(1− e cosE)2

− cos2 E − 2e cosE + e2

(1− e cosE)2

= 1− 2e cosE + e2 cos2 E
(1− e cosE)2

+ − cos2 E + 2e cosE − e2

(1− e cosE)2

= (1− e
2)− (1− e2) cos2 E
(1− e cosE)2

= (1− e
2)(1− cos2 E)

(1− e cosE)2
= (1− e

2) sin2 E
(1− e cosE)2

(3.15)

which implies that

sinν =
√

1− e2 sinE
1− e cosE

. (3.16)

Now, Eqs. (3.14) and (3.16) can be used together to derive a relationship between the
eccentric anomaly and the true anomaly that is valid regardless of the quadrant in
which any of the angles lie. First, consider the tangent half-angle identity

tan
(
θ
2

)
= 1− cosθ

sinθ
. (3.17)

Applying Eq. (3.17) to the angle ν using the results of Eqs. (3.14) and (3.16) gives

tan
(
ν
2

)
=

1− cosE − e
1− e cosE√

1− e2 sinE
1− e cosE

= 1− e cosE − (cosE − e)√
1− e2 sinE

= (1+ e)− (1+ e) cosE√
1− e2 sinE

= (1+ e)(1− cosE)√
1− e2 sinE

= (1+ e)(1− cosE)√
(1+ e)(1− e) sinE

=
√

1+ e
1− e

1− cosE
sinE

.

(3.18)

Then, applying Eq. (3.17) again to the angle E, Eq. (3.18) becomes

tan
(
ν
2

)
=
√

1+ e
1− e tan

(
E
2

)
. (3.19)
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Taking the four-quadrant inverse tangent on both sides of Eq. (3.19) gives

ν
2
= tan−1

[√
1+ e sin

(
E
2

)
,
√

1− e cos
(
E
2

)]
(3.20)

Now E ∈ [0,2π] which implies that E/2 ∈ [0, π]. Consequently, E/2 lies in either
the first or second quadrants which implies that ν/2 in Eq. (3.20) lies on the interval
[0, π]. As a result, ν ∈ [0,2π] in Eq. (3.20). The true anomaly on [0,2π] is then
obtained simply by multiplying both sides of Eq. (3.20) by two, that is,

ν = 2 tan−1
[√

1+ e sin
(
E
2

)
,
√

1− e cos
(
E
2

)]
(3.21)

For completeness, Eq. (3.19) can be rearranged as

tan
(
E
2

)
=
√

1− e
1+ e tan

(
ν
2

)
. (3.22)

Then, by a similar argument as that used to obtain Eq. (3.21), the relationship for E in
terms of ν that results in E ∈ [0,2π] is given as

E = 2 tan−1
[√

1− e sin
(
ν
2

)
,
√

1+ e cos
(
ν
2

)]
(3.23)

where it is noted that, similar to Eq. (3.21), a four-quadrant inverse tangent is used in
Eq. (3.23). Finally, for completeness it is noted that either Eq. (3.21) or (3.23) is valid
for 0 ≤ e < 1 regardless of the quadrant in which the angles E and ν lie. Figure 3.2
shows a plot of the true anomaly, ν , as a function of the eccentric anomaly, E, for
various values of eccentricity, e, obtained using Eq. (3.21). It can be seen in Fig. 3.2
that Eq. (3.21) produces a true anomaly that lies on [0,2π] given an eccentric anomaly
that lies on [0,2π].

Figure 3.2 True anomaly, ν , as a function of the eccentric anomaly, E, for various
values of eccentricity, e, obtained using Eq. (3.21)
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3.3 Relating Eccentric Anomaly and Time

Section 3.2 provided a definition of the eccentric anomaly, E, and further determined
a relationship between E and the true anomaly, ν , on an orbit. Using the definition of
E from Section 3.2, the objective of this section is to determine a relationship between
the eccentric anomaly and the elapsed time, t − t0, between an initial and a terminal
point on an orbit. The equation that provides the relationship between E and t − t0
is called Kepler’s equation and provides the basis for determining either the elapsed
time given the change in the eccentric anomaly or for determining the change in the
eccentric anomaly given an elapsed time between two points on an orbit.

To start the derivation of the relationship between the eccentric anomaly and the
time elapsed on an orbit, consider again Eq. (3.11). Then, taking the rate of change of
r in Eq. (3.11) gives

ṙ = aeĖ sinE. (3.24)

Next, taking the rate of change of r from the orbit equation in Eq. (1.45) gives

ṙ = peν̇ sinν
(1+ e cosν)2

= pe sinν
(1+ e cosν)2

ν̇. (3.25)

Multiplying the numerator and denominator of ṙ in Eq. (3.25) gives

ṙ = p2e sinν
p(1+ e cosν)2

ν̇ = p2

(1+ e cosν)2
e sinν
p

ν̇ =
(

p
1+ e cosν

)2 e sinν
p

ν̇. (3.26)

Now, it is noted that

r 2 =
(

p
1+ e cosν

)2

. (3.27)

Therefore, Eq. (3.26) can then be written as

ṙ = r
2e sinν
p

ν̇. (3.28)

Next, substituting the expression for ν̇ from Eq. (1.83) into Eq. (3.28) gives

ṙ = r
2e sinν
p

h
r 2
= eh sinν

p
. (3.29)

Furthermore, observing from Eq. (1.44) that h = √µp, Eq. (3.29) can be written as

ṙ = e
√µp sinν
p

= e
√
µ
p

sinν (3.30)

Furthermore, noting from Eq. (1.51) that p = a(1− e2), Eq. (3.30) becomes

ṙ = e
√

µ
a(1− e2)

sinν (3.31)

Equating the results of Eqs. (3.24) and (3.28) leads to the equation

aeĖ sinE = e
√

µ
a(1− e2)

sinν (3.32)
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Now, Eq. (3.2) together with the fact that y = r sinν gives

r sinν = b sinE (3.33)

which implies that

sinν = b
r

sinE = a
√

1− e2

r
sinE. (3.34)

Substituting the result of Eq. (3.34) into (3.32) gives

aeĖ sinE = e
√

µ
a(1− e2)

a
√

1− e2

r
sinE = ae

r

√
µ
a

sinE. (3.35)

Equation (3.35) can be simplified to obtain

r Ė =
√
µ
a
. (3.36)

Then, substituting r from Eq. (3.11) into Eq. (3.36) gives

a(1− e cosE)Ė =
√
µ
a
. (3.37)

which implies that

(1− e cosE)Ė =
√
µ
a3
. (3.38)

Equation (3.38) provides a starting point for deriving a relationship between eccentric
anomaly and time.

It is seen that the right-hand side of Eq. (3.38), that is, µ/a3, is a constant. As a
result, Eq. (3.38) and can be integrated as∫

(1− e cosE)dE = E − e sinE =
∫ √

µ
a3
dt =

√
µ
a3
t + C (3.39)

where C is a constant of integration. The constant C can be evaluated using the fact
that E(t0) = E0 which gives

E(t0)− e sinE(t0) = E0 − e sinE0 =
√
µ
a3
t0 + C (3.40)

Solving Eq. (3.40) for C gives

C = E0 − e sinE0 −
√
µ
a3
t0 (3.41)

which implies that

E(t)− e sinE(t)− (E0 − e sinE0) =
√
µ
a3
(t − t0) (3.42)

where E(t) is the eccentric anomaly at an arbitrary time t on the orbit. The quantity
E(t)− e sinE(t) is called the mean anomaly is denoted M(t), that is,

M(t) = E(t)− e sinE(t). (3.43)
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Equation (3.42) is called Kepler’s equation.
While in principal the form of Kepler’s equation given in Eq. (3.42) provides a rela-

tionship between the time as a function of true anomaly, it is not the most convenient
form to use. Instead, Kepler’s equation can be re-written in the following way. Sup-
pose that tP is the time at which the spacecraft was located at periapsis just prior to
its location at t0. Then, at time tP it must be the case that E is a multiple of 2π , that
is, E(tP) = 2πk, (k = 0,±1,±2, . . .). Denoting Ep = E(tp), the value Ep can arbitrarily
be set to zero, that is,

EP = E(tP) = 0. (3.44)

Now, in terms of tP , t − t0 can be written as

t − t0 = (t − tP)− (t0 − tP). (3.45)

Now consider each term in Eq. (3.45) separately. First, consider the term t0 − tP . Then,
applying Eq. (3.42) by replacing t with t0, replacing t0 with tP , and noting that E(t0) =
E0 and E(tP) = EP gives

E0 − e sinE0 − (EP − e sinEP) =
√
µ
a3
(t0 − tP). (3.46)

But it is seen from Eq. (3.44) that EP = 0 which implies that sinEP = 0. Therefore,
Eq. (3.46) simplifies to

E0 − e sinE0 =
√
µ
a3
(t0 − tP). (3.47)

Next, consider the term t − tP . Now, as the spacecraft travels from EP = 0 to E(t), it
is possible that it makes one or more complete orbits (revolutions) about the central
body. Moreover, it is noted that, every time the spacecraft makes a complete revo-
lution, the eccentric anomaly changes by 2π . Therefore, if the spacecraft makes k
revolutions in moving from EP to E(t), the change in the eccentric anomaly from tP to
t can be written as

E(t) = 2πk+ E, (3.48)

where E ∈ [0,2π] is the eccentric anomaly measured from the periapsis on the incom-
plete revolution after the spacecraft has crossed periapsis for the kth time. Figure 3.3
provides a schematic of the change in the eccentric anomaly as the spacecraft moves
from EP = 0 to E(t) along with more information about the angle E given in Eq. (3.48).

Substituting E(t) in Eq. (3.48) into Eq. (3.42) by replacing t0 with tP gives

E(t)− e sinE(t) = 2πk+ E − e sinE =
√
µ
a3
(t − tP). (3.49)

Then, Eqs. (3.49) and (3.46) can be subtracted to obtain

2πk+E− e sinE− (E0− e sinE0) =
√
µ
a3
(t− tP)−

√
µ
a3
(t0− tP) =

√
µ
a3
(t− t0). (3.50)

Equation (3.50) can be solved for t − t0 to give

t − t0 =
√
a3

µ

[
2πk+ (E − e sinE)− (E0 − e sinE0)

]
. (3.51)
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Figure 3.3 Schematic of the change in eccentric anomaly as the spacecraft travels
from EP = 0 at time tP to E(t) at time t and crosses periapsis k times en route from
EP to E(t). The angle E is the true anomaly measured from periapsis after the kth
periapsis crossing.

It is noted that Eq. (3.51) is the general form of Kepler’s equation and provides a rela-
tionship between the time elapsed on an orbit and the eccentric anomaly. Effectively,
Eq. (3.51) provides a way of solving the two-body differential equation for the location
on the orbit at time t given the initial time t0 and the initial location on the orbit where
the initial location on the orbit is given by the initial eccentric anomaly E0.
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Figure 3.4 Schematic showing two general points on an orbit where the spacecraft
is located at point A0 at time t0 with a true anomaly and eccentric anomaly ν0 and
E0, respectively, and is located at point A at time t with a true anomaly and eccentric
anomaly ν and E, respectively. The spacecraft crosses periapsis a total of k times en
route from point A0 to point A.
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3.4 Solving Kepler’s Equation

Equation (3.51) derived in Section 3.3 provides a relationship between the time elapsed
as a spacecraft moves en route from an initial location on an orbit at t0 to a final
location on the orbit at time t. Upon further examination, it is seen that Eq. (3.51) can
be used in one of two ways. The first possibility is that, given an init Computing t − t0
given the aforementioned information is algebraic in substituting the quantities E0, E,
and k into Eq. (3.51) yields t−t0 directly. The second possibility is that, given the initial
time, t0, the initial eccentric anomaly E0, and the final time t, Eq. (3.51) can be used to
solve for the final eccentric anomaly E. Note, however, that, unlike the situation where
the initial and final location information is given as it is desired to obtain t− t0, in this
latter situation the final eccentric anomaly E cannot be obtained algebraically because
the mean anomaly M = E − e sinE is a transcendental function of E and, thus, it is not
possible to obtain E algebraically using Eq. (3.51).

The final eccentric anomaly, E, given t0, E0, and t, can be obtained as follows.
Suppose Eq. (3.51) is solved for E − e sinE as

E − e sinE =
√
µ
a3
(t − t0)− 2πk+ (E0 − e sinE0). (3.52)

It is seen in Eq. (3.52) that all of the quantities on the right-hand side of Eq. (3.52)
are known. Thus, the only unknown in Eq. (3.52) is E. Because E cannot be obtained
algebraically, it must be obtained numerically using a root-finding method. Suppose
the quantity C is defined as

C =
√
µ
a3
(t − t0)− 2πk+ (E0 − e sinE0). (3.53)

Then Eq. (3.53) can be written as

E = e sinE + C (3.54)

Now, Eq. (3.54) will have a solution provided that the orbit is elliptic, that is, Eq. (3.54)
can be solved if 0 ≤ e < 1. The solution to Eq. (3.54) is called a fixed point and can be
obtained using a fixed-point iteration. A fixed-point iteration has the general form

x(k+1) = f(x(k)), (3.55)

where the value x is sought and x(k) is the kth iteration, and f(x) is the function that
maps x(k) -→ x(k+1). In this case f is a function of the eccentric anomaly and is given
as

f(E) = e sinE + C. (3.56)

It is noted that f is also a function of the paramters a and e, a and e are constants.
Applying Eq. (3.55) to (3.54), the fixed-point iteration used to solve Kepler’s equation
is given as follows:

E(k+1) = e sinE(k) + C. (3.57)

Finally, it is noted that two aspects of the fixed-point iteration must be set in order to
obtain an accurate solution. First, it is important to choose a good initial guess. As it
turns out, the following initial guess works quite well:

E(0) = M0 = E0 − e sinE0, (3.58)
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where M0 is the mean anomaly at t0 [see Eq. (3.43)]. Next, the number of iterations
must be specified. It turns out that the proper number of iterations depends upon the
value of the eccentricity, e, and is obtained from the following relationship:

N = 10
⌈

1
1− e

⌉
, (3.59)

where dxe is the largest integer in x.

3.5 Method for Determining Location on Orbit

The results of Sections 3.2 and 3.4 can now be combined with the results of Sections 2.4
and 2.5 as described in Chapter 2 to develop a method for determining the position and
inertial velocity of a spacecraft expressed in Earth-centered inertial (ECI) coordinates at
an arbitrary time t given the position and inertial velocity of the spacecraft expressed
in ECI coordinates at an initial time t0. The following information is required for the
method that follows:

• The initial time, t0.

• The position and inertial velocity of the spacecraft at t0, r(t0) and Iv(t0).

• The final time t.

Furthermore, in the method that follows let ν0 be the true anomaly at the initial time
t0. The method for determining (r(t), Iv(t)) then consists of the the following five
steps:

1. Given (r(t0), Iv(t0)) as described in Section 2.4, compute the orbital elements (a, e,Ω, i,ω, ν0)
of Chapter 2.

2. Solve for E0 using Eq. (3.21) on page 57 given the initial true anomaly, ν0 as obtained
in Step 1.

3. Solve Eq. (3.54) for E using a fixed-point iteration as described in Section 3.4, where
the value C is given in Eq. (3.53).

4. Solve for the true anomaly ν at time t using Eq. (3.23), where E is as obtained in
Step 3.

5. Given the orbital elements (a, e,Ω, i,ω, ν), where ν is as obtained in Step 4, com-
pute the final position and inertial velocity, (r(t), Iv(t)), as described in Section 2.4
of Chapter 2.
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Problems for Chapter 3

3–1 Let I be a planet and let O be the center of the planet. Furthermore, assume
that I is an inertial reference frame. The two-body differential equation relative to the
center of the planet is given in Eq. (1.15) as

Ia+ µ
r 3

r = 0,

where r is the position of a spacecraft measured relative to point O and Ia is the
acceleration of the body as viewed by an observer fixed in I . The objective of this
question is to write a MATLAB code that integrates the two-body differential equation
from an initial time t = t0 to a terminal time t = tf given that the position, r, and
the inertial velocity, Iv, are known at t0. In order to make it possible to perform the
aforementioned integration in MATLAB, consider that r and Iv are parameterized in
a planet-centered inertial (PCI) coordinate system defined by the center of the planet,
that is,

[r]I =
 xy
z

 ,
[Iv]I =

 vxvy
vz

 .
Using the PCI parameterization of the position and velocity of the spacecraft, deter-
mine the following:

(a) A system of six first-order differential equations for the motion of the spacecraft.

(b) A MATLAB function called twoBodyOde that computes the right-hand side of the
six differential equations given in part (a). The MATLAB function should take the
following inputs:

• The time, t.
• A 6×1 column matrix p such that the first three components of p are [r]I and

the fourth through sixth components of p are
[Iv]I .

• The gravitational parameter, µ.

Next, the output of the MATLAB function is a 6 × 1 column matrix ṗ that contains
the right-hand side of the differential equations evaluated at t and p. Note for
completeness that the output ṗ must be coded in MATLAB as the variable named
“pdot”.

(c) Write a MATLAB m-file that, given an initial PCI position and PCI inertial velocity,
[r]I and

[Iv]I , integrates the MATLAB implementation of the differential equations
using the MATLAB differential equation solver ode113. This MATLAB m-file should
set up the function ode113 and ode113 should call the function that was written
in part (b).

(d) Apply your MATLAB code to the following cases, report your PCI position and iner-
tial velocity at t = tf , and plot the PCI position [r]I you obtain with the command
plot3 in MATLAB.
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(1) (t0, tf ) = (1329.16,3885.73) min and

[r(t0)]I =
 68524.298
−17345.863
−51486.409

 km ,
[Iv(t0)]I =

 −0.578936
0.957665
0.357759

 km · s−1.

(2) (t0, tf ) = (3.93,1771.58) min and

[r(t0)]I =
 2721.965

3522.863
5267.244

 km ,
[Iv(t0)]I =

 9.572396
−0.474701
−2.725664

 km · s−1.

(3) (t0, tf ) = (242.82,612.69) min and

[r(t0)]I =
 6997.56
−34108.00

20765.49

 km ,
[Iv(t0)]I =

 0.15599
0.25517
1.80763

 km · s−1.

(4) (t0, tf ) = (616.79,1880.41) min and

[r(t0)]I =
 1882.725

9864.690
4086.088

 km ,
[Iv(t0)]I =

 −5.565367
5.451548
2.258105

 km · s−1.

(5) (t0, tf ) = (21.02,1913.38) min and

r(t0) =
 −664.699

8112.75
4479.81

 km , Iv(t0) =
 −0.87036
−0.068046
−8.290459

 km · s−1.

(6) (t0, tf ) = (27,57) min and

[r(t0)]I =
 −10515.45
−5235.37

49.1700

 km, ,
[Iv(t0)]I =

 −2.10305
−4.18146

5.56329

 km · s−1.

3–2 Using the results developed in this chapter for the case of an elliptic orbit (that
is, 0 ≤ e < 1), develop a solver in MATLAB that uses Kepler’s equation to determine
the position and inertial velocity of a spacecraft in planet-centered inertial (PCI) coor-
dinates at an arbitrary time t, given the position and inertial velocity of the spacecraft
in PCI coordinates at an initial time t0. The inputs to the MATLAB code should be a
column vector that contains the initial position, r(t0), a second column vector that
contains the inertial velocity, Iv(t0), a scalar that contains the initial time, t0, a scalar
that contains the final time, t, and a scalar that contains the planet gravitational pa-
rameter, µ. The outputs to the MATLAB code should be a column vector that contains
the position, r(t) and a second column vector that contains the inertial velocity, Iv(t).
The MATLAB function should be set up so that it could be provided to an independent
user of the code and produce the required outputs given the required inputs in the
format stated.
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3–3 Suppose that the position and inertial velocity of a spacecraft in Earth (denoted I)
orbit at a time t0 = 1329.16 min are given in Earth-centered inertial (ECI) coordinates
as

[r(t0)]I =
 68524.298
−17345.863
−51486.409

 km ,
[Iv(t0)]I =

 −0.578936
0.957665
0.357759

 km · s−1.

Determine the following quantities related to the spacecraft orbit at a time t = 3885.73 min:

(a) The eccentric anomaly, E.

(b) The true anomaly, ν .

(c) The ECI position, [r(t)]I , and the ECI inertial velocity,
[Iv(t)]I .

(d) Compare the value of [r(t)]I and
[Iv(t)]I obtained in part (c) to the values obtained

using the MATLAB integrator ode113 (see Question 1).

Finally, perform the following steps to construct a time series of values of PCI position
and velocity at various times on the time interval t ∈ [t0, tf ]:
(e) Divide the time interval t ∈ [t0, tf ] into 100 subintervals and store the values in

single column matrix (array).

(f) Solve for the ECI position [r(t)]I , and the inertial velocity,
[Iv(t)]I at each value of

time given in the array created in part (e).

(g) Collect the values of ECI position [r(t)]I and ECI inertial velocity
[Iv(t)]I into an

array where each row of each array corresponds to a value of either [r(t)]I or[Iv(t)]I .
(h) Display and print the arrays created in part (g).

(i) Plot the array of PCI positions, [r]I , obtained in part (e) alongside the result of
using the MATLAB integrator ode113 with the MATLAB command plot3.

In determining your answers, use µ = 398600 km3 · s−2 as the value for the Earth
gravitational parameter.

3–4 Suppose that the position and inertial velocity of a spacecraft in Earth (denoted
I) orbit at a time t0 = 3.93 min are given, respectively, as

rT(t0) =
[

2721.965 3522.863 5267.244
]

km,
IvT(t0) =

[
9.572396 −0.474701 −2.725664

]
km · s−1.

Determine the following quantities related to the spacecraft orbit at a time t = 1771.58 min:

(a) The eccentric anomaly, E.

(b) The true anomaly, ν .

(c) The position, [r(t)]I , and the inertial velocity,
[Iv(t)]I .
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(d) Compare the value of [r(t)]I and
[Iv(t)]I obtained in part (c) to the values obtained

using the MATLAB integrator ode113 (see Question 1).

Finally, perform the following steps to construct a time series of values of PCI position
and velocity at various times on the time interval t ∈ [t0, tf ]:
(e) Divide the time interval t ∈ [t0, tf ] into 100 subintervals and store the values in

single column matrix (array).

(f) Solve for the ECI position [r(t)]I , and the inertial velocity,
[Iv(t)]I at each value of

time given in the array created in part (e).

(g) Collect the values of ECI position [r(t)]I and ECI inertial velocity
[Iv(t)]I into an

array where each row of each array corresponds to a value of either [r(t)]I or[Iv(t)]I .
(h) Display and print the arrays created in part (g).

(i) Plot the array of PCI positions, [r]I , obtained in part (e) alongside the result of
using the MATLAB integrator ode113 with the MATLAB command plot3.

In determining your answers, use µ = 398600 km3 · s−2 as the value for the Earth
gravitational parameter.

3–5 Suppose that the position and inertial velocity of a spacecraft in Earth (denoted
I) orbit at a time t0 = 242.82 min are given, respectively, as

rT(t0) =
[

6997.56 −34108.00 20765.49
]

km,
IvT(t0) =

[
0.15599 0.25517 1.80763

]
km · s−1.

Determine the following quantities related to the spacecraft orbit at a time t = 612.69 min:

(a) The eccentric anomaly, E.

(b) The true anomaly, ν .

(c) The position, [r(t)]I , and the inertial velocity,
[Iv(t)]I .

(d) Compare the value of [r(t)]I and
[Iv(t)]I obtained in part (c) to the values obtained

using the MATLAB integrator ode113 (see Question 1).

Finally, perform the following steps to construct a time series of values of PCI position
and velocity at various times on the time interval t ∈ [t0, tf ]:
(e) Divide the time interval t ∈ [t0, tf ] into 100 subintervals and store the values in

single column matrix (array).

(f) Solve for the ECI position [r(t)]I , and the inertial velocity,
[Iv(t)]I at each value of

time given in the array created in part (e).

(g) Collect the values of ECI position [r(t)]I and ECI inertial velocity
[Iv(t)]I into an

array where each row of each array corresponds to a value of either [r(t)]I or[Iv(t)]I .
(h) Display and print the arrays created in part (g).
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(i) Plot the array of PCI positions, [r]I , obtained in part (e) alongside the result of
using the MATLAB integrator ode113 with the MATLAB command plot3.

In determining your answers, use µ = 398600 km3 · s−2 as the value for the Earth
gravitational parameter.

3–6 Suppose that the position and inertial velocity of a spacecraft in Earth (denoted
I) orbit at a time t0 = 616.79 min are given, respectively, as

rT(t0) =
[

1882.725 9864.690 4086.088
]

km,
IvT(t0) =

[
−5.565367 5.451548 2.258105

]
km · s−1.

Determine the following quantities related to the spacecraft orbit at a time t = 1880.41 min:

(a) The eccentric anomaly, E.

(b) The true anomaly, ν .

(c) The position, [r(t)]I , and the inertial velocity,
[Iv(t)]I .

(d) Compare the value of [r(t)]I and
[Iv(t)]I obtained in part (c) to the values obtained

using the MATLAB integrator ode113 (see Question 1).

Finally, perform the following steps to construct a time series of values of PCI position
and velocity at various times on the time interval t ∈ [t0, tf ]:
(e) Divide the time interval t ∈ [t0, tf ] into 100 subintervals and store the values in

single column matrix (array).

(f) Solve for the ECI position [r(t)]I , and the inertial velocity,
[Iv(t)]I at each value of

time given in the array created in part (e).

(g) Collect the values of ECI position [r(t)]I and ECI inertial velocity
[Iv(t)]I into an

array where each row of each array corresponds to a value of either [r(t)]I or[Iv(t)]I .
(h) Display and print the arrays created in part (g).

(i) Plot the array of PCI positions, [r]I , obtained in part (e) alongside the result of
using the MATLAB integrator ode113 with the MATLAB command plot3.

In determining your answers, use µ = 398600 km3 · s−2 as the value for the Earth
gravitational parameter.

3–7 Suppose that the position and inertial velocity of a spacecraft in Earth (denoted
I) orbit at a time t0 = 21.02 min are given, respectively, as

rT(t0) =
[
−664.699 8112.75 4479.81

]
km,

IvT(t0) =
[
−0.87036 −0.068046 −8.290459

]
km · s−1.

Determine the following quantities related to the spacecraft orbit at a time t = 1913.38 min:

(a) The eccentric anomaly, E.
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(b) The true anomaly, ν .

(c) The position, [r(t)]I , and the inertial velocity,
[Iv(t)]I .

(d) Compare the value of [r(t)]I and
[Iv(t)]I obtained in part (c) to the values obtained

using the MATLAB integrator ode113 (see Question 1).

Finally, perform the following steps to construct a time series of values of PCI position
and velocity at various times on the time interval t ∈ [t0, tf ]:
(e) Divide the time interval t ∈ [t0, tf ] into 100 subintervals and store the values in

single column matrix (array).

(f) Solve for the ECI position [r(t)]I , and the inertial velocity,
[Iv(t)]I at each value of

time given in the array created in part (e).

(g) Collect the values of ECI position [r(t)]I and ECI inertial velocity
[Iv(t)]I into an

array where each row of each array corresponds to a value of either [r(t)]I or[Iv(t)]I .
(h) Display and print the arrays created in part (g).

(i) Plot the array of PCI positions, [r]I , obtained in part (e) alongside the result of
using the MATLAB integrator ode113 with the MATLAB command plot3.

In determining your answers, use µ = 398600 km3 · s−2 as the value for the Earth
gravitational parameter.

3–8 Suppose that the position and inertial velocity of a spacecraft in Earth (denoted
I) orbit at a time t0 = 27 min are given, respectively, as

rT(t0) =
[
−10515.45 −5235.37 49.17

]
km,

IvT(t0) =
[
−2.10305 −4.18146 5.563290

]
km · s−1.

Determine the following quantities related to the spacecraft orbit at a time t = 57 min:

(a) The eccentric anomaly, E.

(b) The true anomaly, ν .

(c) The position, [r(t)]I , and the inertial velocity,
[Iv(t)]I .

(d) Compare the value of [r(t)]I and
[Iv(t)]I obtained in part (c) to the values obtained

using the MATLAB integrator ode113 (see Question 1).

Finally, perform the following steps to construct a time series of values of PCI position
and velocity at various times on the time interval t ∈ [t0, tf ]:
(e) Divide the time interval t ∈ [t0, tf ] into 100 subintervals and store the values in

single column matrix (array).

(f) Solve for the ECI position [r(t)]I , and the inertial velocity,
[Iv(t)]I at each value of

time given in the array created in part (e).
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(g) Collect the values of ECI position [r(t)]I and ECI inertial velocity
[Iv(t)]I into an

array where each row of each array corresponds to a value of either [r(t)]I or[Iv(t)]I .
(h) Display and print the arrays created in part (g).

(i) Plot the array of PCI positions, [r]I , obtained in part (e) alongside the result of
using the MATLAB integrator ode113 with the MATLAB command plot3.

In determining your answers, use µ = 398600 km3 · s−2 as the value for the Earth
gravitational parameter.
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Chapter 4

Rocket Dynamics

4.1 Introduction

Chapters 1–3 focused on the motion of a spacecraft under the influence of a central
body gravitational force. Using these concepts as a starting point, the next objective is
to determine way to change the orbit of a spacecraft by applying a propulsive (thrust)
force to the spacecraft. The term orbit transfer itself refers to utilizing external forces
to change the orbit of a spacecraft, the primary force amongt those external forces
being thrust. In order to develop the orbit transfers it is first necessary to study the
motion of a spacecraft that is subject to a thrust force. The general term for the study
of the motion of a vehicle subject to a thrust force is called rocket dynamics. In this
chapter the physics and mathematics of the differential equation that governs the mo-
tion of a rocket subject to a thrust force is derived. Then, this differential equation
for the motion of a rocket is solved, leading to the rocket equation that provides rela-
tionship between the change in velocity, also known as ∆v , as a function of the fuel
that is consumed. The rocket equation is first derived for a vehicle whose thrust is
finite. Then, the impulsive-thrust approximation is developed where it is assumed that
the thrus is extremely large and can be approximated by infinite thrust that is capable
of changing velocity instantaneously. The impulsive-thrust model developed in this
chapter is then used as the basis of impulsive orbit transfer in Chapter 5.

4.2 Rocket Equation

The first step in developing the fundamental impulsive orbit transfers is to describe
the dynamics associate with the expenditure of propellant that arises when a vehicle in
motion is subject to a thrust (propulsive) force. Specifically, consider a vehicle moving
through free space where at an instant of time t the mass and the inertial velocity of
the vehicle are given, respectively, by m(t) and Iv(t). Then the linear momentum of
the system at time t, denoted Ip(t), is given as

Ip(t) =m(t)Iv(t) (4.1)

A schematic of the configuration of the vehicle at time t is shown in Fig. 4.1. Next,
suppose that the resultant external force acting on the vehicle is F. Suppose further
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that, due to propellent consumption, the mass of the vehicle at time t+∆t ism(t)−b∆t
where

dm
dt

= −b, (b ≥ 0), (4.2)

while the inertial velocity of the vehicle at time t+∆t is Iv(t)+∆Iv (see again, Fig. 4.1).
Then the mass particle expended from the vehicle in the time increment ∆t is given as

∆m = b∆t. (4.3)

Therefore, the linear momentum of the system at time t + ∆t (that is, the linear mo-
mentum of the vehicle and the propellant mass ∆m consumed in the time increment
∆t) is given as

Ip(t +∆t) = (m(t)− b∆t)(Iv(t)+∆Iv)+ b∆tIv∆m, (4.4)

where Iv∆m is the inertial velocity of the mass particle ∆m that has been expended
in the time increment ∆t. Suppose now that the velocity of the expended mass ∆m
relative to the vehicle is denoted Ive. It is noted that the quantity Ive is called the
exhaust velocity of the propellant. In terms of the exhaust vehicle, the inertial velocity
of the mass particle ∆m at time t +∆t is given as

Iv∆m = Ive + Iv+∆Iv. (4.5)

Consequently, the linear momentum of the system at time t + ∆t in Eq. (4.4) can be
written as

Ip(t +∆t) = (m(t)− b∆t)(Iv(t)+∆Iv)+ b∆t(Ive + Iv+∆Iv). (4.6)

Equation (4.6) can then be expanded to give

Ip(t +∆t) =m(t)Iv(t)+m(t)∆Iv− b∆tIv(t)− b∆t∆Iv
+ b∆tIve + b∆tIv(t)+ b∆t∆Iv
=m(t)Iv(t)+m(t)∆Iv+ b∆tIve.

(4.7)

Subtracting Eq. (4.1) from Eq. (4.7) gives

Ip(t +∆t)− Ip(t) =m(t)∆Iv+ b∆tIve (4.8)

Then, applying the principle of impulse and momentum to the vehicle, the change in
linear momentum given in Eq. (4.8) is equal to the impulse F∆t applied over the time
increment ∆t which implies that

Ip(t +∆t)− Ip(t) =m(t)∆Iv+ b∆tIve ≈ F∆t (4.9)

Dividing Eq. (4.9) by ∆t and taking the limit as ∆t → 0 in the inertial reference frame I
gives

m
Id
dt

(
Iv
)
+ bIve = F (4.10)

which can be rearranged to give

m
Id
dt

(
Iv
)
= −bIve + F. (4.11)
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The quantity −bIve in Eq. (4.11) is called the thrust force. Observe that the exhaust
velocity Ive is in the direction opposite the velocity of the vehicle. Therefore, the quan-
tity −bIve is in the direction of motion of the vehicle which should be the case if the
vehicle is being propelled in a direction that increases its inertial speed. Suppose now
that the thrust force is denoted T, that is,

T = −bIve. (4.12)

Then Eq. (4.11) can be written in terms of the force T as

m
Id
dt

(
Iv
)
= T+ F. (4.13)

It is noted that the resultant force applied to the vehicle remains separated into a
thrust (propulsive) force and all other forces applied to the vehicle.

Figure 4.1 Schematic showing the linear momentum of the system consisting of a
vehicle that is expending propellant during its motion. The linear momentum of the
system is shown at two instants of time, t and t +∆t.

4.3 Solution of Rocket Equation

Consider now the case of Eq. (4.13) where F = 0. Then Eq. (4.13) reduces to

m
Id
dt

(
Iv
)
= T. (4.14)

Now from the definition of the thrust force given in Eq. (4.12),

‖T‖ = T = ‖− bIve‖ = bve, (4.15)

where ve = ‖Ive‖. Solving Eq. (4.15) for b gives

b = T
ve
. (4.16)

Then, substituting b from Eq. (4.16) into Eq. (4.2) gives

ṁ = − T
ve
. (4.17)

Equation (4.14) can then be written as

m
Id
dt

(
Iv
)
= T = −bIve = − Tve

Ive = Tu, (4.18)
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where

u = −
Ive
ve

(4.19)

is the unit vector in the direction opposite the exhaust velocity. Dividing Eq. (4.18) by
m gives

Id
dt

(
Iv
)
= T = −bIve = − Tve

Ive = T
m

u, (4.20)

Suppose now that the unit vector u is fixed in the inertial frame I . Because the only
force applied to the vehicle lies in an inertially fixed direction, the inertial velocity also
must lie in the that same inertially fixed direction which implies that

Iv = vu. (4.21)

Then Eq. (4.20) can be re-written as

Id
dt

(
Iv
)
=
Id
dt
(vu) = dv

dt
u = T

m
u, (4.22)

where it is noted that Idu/dt = 0. Equation (4.22) yields the scalar differential equation

dv
dt
= T
m
. (4.23)

Now, solving Eq. (4.17) for T gives

T = −veṁ = −vedmdt . (4.24)

Substituting T from Eq. (4.24) into Eq. (4.23) gives

dv
dt
= −veṁ

m
= −ve

m
dm
dt

(4.25)

Therefore,

dv = −ve
m
dm (4.26)

Integrating both sides of Eq. (4.26) gives∫
dv = v =

∫
−ve
m
dm = −ve ln |m| + C, (4.27)

where C is a constant of integration. Now let t0 be the initial time. Furthermore, let
v(t0) = v0 and m(t0) =m0. Evaluating Eq. (4.27) at t0 gives

v(t0) = v0 = −ve ln |m(t0)| + C (4.28)

from which the constant C is obtained as

C = v0 + ve ln |m(t0)| (4.29)

Substituting C from Eq. (4.29) into Eq. (4.27) gives

v = −ve ln |m| + v0 + ve ln |m(t0)| (4.30)
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Equation (4.30) can be rearranged as

v − v0 = ve ln
∣∣∣∣m0

m

∣∣∣∣ (4.31)

Next, assume now that the thrust magnitude, T , is constant. Then integrating
Eq. (4.17) from t0 to t using the initial condition m(t0) =m0 gives

m(t)−m0 =
∫ t
t0
− T
ve
dη = − T

ve
(t − t0). (4.32)

which implies that

m(t) =m0 − Tve (t − t0). (4.33)

Equation (4.31) can then be used to rewrite Eq. (4.31) as

v(t)− v0 = ve ln

∣∣∣∣∣∣∣∣∣
m0

m0 − Tve (t − t0)

∣∣∣∣∣∣∣∣∣ = ve ln
∣∣∣∣ m0

m(t)

∣∣∣∣ . (4.34)

Now, because the mass must be positive, the absolute value can be dropped in Eq. (4.34)
which leads to

v(t)− v0 = ve ln
[
m0

m(t)

]
. (4.35)

Setting v = v(t), m =m(t) and ∆v = v − v0, Eq. (4.35) can be written as

∆v = ve ln
(
m0

m

)
. (4.36)

The quantity ∆v in Eq. (4.36) is often referred to as the characteristic velocity or, more
simply, “Delta-V”.

Now, the exhaust speed ve is typically written as the product of two quantities g0

and Isp as
ve = g0Isp, (4.37)

where g0 is the standard Earth acceleration due to gravity at sea level and has exact
numeric value g0 = 9.80665 m · s−2 while Isp is the specific impulse. Then, in terms of
g0 and Isp, Eq. (4.36) can be written as

∆v = g0Isp ln
(
m0

m

)
. (4.38)

Now, for completeness, from Eq. (4.23) it is seen that

∆v =
∫ tf
t0

T
m
dt. (4.39)

Equation (4.39) implies that the quantity∫
T
m
dt (4.40)

is an alternate expression for the characteristic velocity. Finally, it is seen that the
characteristic velocity is equivalent to ∆v and is a measure of the propellant consumed
during a thrust maneuver.
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4.4 Impulsive Thrust Approximation

An important approximation that is used in the propulsion of many spacecraft is the
so called impulsive thrust approximation. Essentially, the impulsive thrust approxima-
tion assumes that an infinite amount of thrust can be applied to the spacecraft. While
clearly it is not possible to apply an infinite amount of thrust, many spacecraft employ
high-thrust chemical propulsion systems where an impulsive thrust approximation is
reasonable. The basic idea behind the impulsive thrust approximation that, because
the thrust is extremely large, the time of a high-thrust burn is very small in compar-
ison to the time between burns. Thus, impulsive-thrust is an idealization where it is
assumed that an infinite thrust can be applied instantaneously. It is noted that impul-
sive thrust is a poor approximation during the ascent phases of a rocket due to drag
and gravity losses.

The impulsive-thrust approximation is obtained as follows. Consider a vehicle that
is subject to only a thrust force T. Furthermore, consider a scalar version of Eq. (4.14)
as

dv
dt
= T
m
. (4.41)

Suppose now that the model for the thrust, T , is given as

T(t) =


0 , t ≤ − ε2 ,
T̂
ε , − ε2 ≤ t ≤ ε

2 ,
0 , t ≥ ε

2 ,

 . (4.42)

It is seen from Eq. (4.42) that ∫∞
−∞
T(t)dt = T̂ , (4.43)

which is also the area under the thrust function curve. Suppose now that it is assumed
that the value of ε approaches zero in such a manner that the area remains constant.
The only way for the area to remain constant is if, in the limit as ε → 0, the thrust has
the form

T(t) =


0 , t < 0,
∞ , t = 0,
0 , t > 0.

 . (4.44)

Equation (4.44) is referred to as the impulsive-thrust approximation which can be equiv-
alently written as

T = T̂δ(t), (4.45)

where the function δ(t) is called the Dirac delta function and has the form

δ(t) =


0 , t < 0,
∞ , t = 0,
0 , t > 0.

 . (4.46)

The Dirac delta function is defined such that∫∞
−∞
δ(t)dt = 1. (4.47)

Thus the impulsive-thrust approximation is essentially a Dirac delta function scaled
by a constant T̂ .
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Suppose now that the impulsive-thrust approximation is applied to Eq. (4.41). Then,

dv
dt
= T̂
m
δ(t) (4.48)

which implies that impulsive thrust is applied at time t = 0. Integrating both sides of
Eq. (4.48) from t = 0− to t = 0+ gives∫ 0+

0−

dv
dt
dt =

∫ 0+

0−

T̂
m
δ(t)dt. (4.49)

Then, because the thrust is applied over a zero duration, Eq. (4.49) becomes

v(0+)− v(0−) = ∆v =
∫ 0+

0−

T̂
m
δ(t)dt. (4.50)

Then, from Eq. (4.38), the left-hand side of Eq. (4.50) is given as∫ 0+

0−

T̂
m
δ(t)dt = g0Isp ln

(
m−

m+

)
(4.51)

which implies that

∆v = g0Isp ln
(
m−

m+

)
. (4.52)

Equation (4.52) states that for an impulsive-thrust approximation the velocity can be
changed instantaneously.
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Chapter 5

Impulsive Orbit Transfer

5.1 Introduction

The objective of this chapter is to begin studying the problem of orbit transfer utiliz-
ing many of the results that were developed in Chapters 1–3. The initial part of the
study of orbit transfer focuses on the use of thrust (propulsive) force that consumes
on board propellant (fuel) to modify the orbit of a spacecraft that would otherwise
remain the same due to the fact that without thrust the motion of the spacecraft be
Keplerian. As a first approximation, it is assumed that an infinite amount of thrust can
be applied, thereby allowing for an instantaneous change in the inertial velocity of the
spacecraft. A propulsion model that assumes infinite thrust is called an impulsive orbit
transfer because the velocity can be changed without the passage of time. This chapter
will describe the impulsive thrust model and justify why such a model is a good ap-
proximation for a variety of spacecraft. Then, using the impulsive thrust model, funda-
mental co-planar and non-co-planar transfers will be studied that transfer a spacecraft
between either two circular orbits or between a circular orbit and an elliptic orbit. The
fundamental co-planar transfer studied in this chapter is the Hohmann transfer with
an extension of the Hohmann transfer called the bi-elliptic transfer. The the funda-
mental non-co-planar transfer is the non-co-planar extension of the Hohmann transfer
where an impulse is applied to change the orbital inclination. Finally, conditions will
be developed for intercept (where two objects arrive concurrently at the particular po-
sition) and rendezvous (where two vehicles arrive concurrently with the same position
and inertial velocity).

5.2 Two-Impulse Transfer Between Co-Planar Circular Or-
bits

Consider now a transfer between two co-planar circular orbits. The radius of the initial
orbit is r1 while the radius of the terminal orbit is r2. Furthermore, assume that the two
orbits lie in the same plane (that is, the two orbits have the same orbital inclination).
Suppose now that a spacecraft is in motion in the initial circular orbit of radius r1 and
the objective is to transfer the spacecraft from this initial circular orbit to the terminal
circular orbit of radius r2. As it turns out, provided that the two circular orbits are co-
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planar, the transfer can be accomplished using two impulses ∆Iv1 and ∆Iv2. Each of
these impulses change the energy of the orbit by raising the periapsis, the apoapsis, or
both the periapsis and the apoapsis of the orbit. Whether the periapsis, the apoapsis,
or both apses are changed by an impulse depends upon the location where the impulse
is applied. Because the transfer is co-planar, energy impulses occur in the orbit plane
and are referred to an energy change impulses. The first impulse, ∆Iv1, places the
spacecraft on an elliptic transfer orbit, where the elliptic transfer orbit has the same
focus as that of the initial orbit. The second impulse, ∆Iv2, places the spacecraft in the
terminal circular orbit. A schematic of a general two-impulse planar transfer between
two circular orbits is shown in Fig. 5.1.

It is seen Fig. 5.1 that the transfer orbit (which in this case is an ellipse) must inter-
sect both the initial orbit and the terminal orbit. As a result, all orbits whose periapsis
radius is larger than r1 (that is, any transfer orbit whose periapsis radius larger than
the radius of the smaller circular orbit) and whose apoapsis radius is smaller than r2

(that is, any transfer orbit whose periapsis radius is smaller than the radius of the
larger circular orbit) are infeasible and are excluded as a possibility. Then, in terms of
Eqs. (1.46) and (1.47), all feasible transfer orbits must satisfy the following conditions:

rp = p
1+ e ≤ r1, (5.1)

ra = p
1− e ≥ r2. (5.2)

Equations (5.1) and (5.2) can be re-written as

p ≤ r1(1+ e), (5.3)

p ≥ r2(1− e). (5.4)

5.3 The Hohmann Transfer

In 1925, Walter Hohmann published a monograph titled Die Erreichbarkeit der Himmel-
sörpker [English translation: The Attainability of Celestial Bodies]. Hohmann’s conjec-
ture at that time was that the minimum-fuel impulsive transfer between two co-planar
circular orbits consisted of two impulses, where the first impulse is tangent to the
initial orbit while the second impulse is tangent to the terminal orbit. The Hohmann
transfer is shown in Fig. 5.2 where the radii of the initial and terminal circular orbits
are r1 and r2, respectively, and r2 > r1* The first impulse, ∆Iv1, is then applied, chang-
ing orbit from the initial orbit to an elliptic transfer orbit whose periapsis is r1 and
whose apoapsis is r2. The spacecraft then travels from periapsis to apoapsis of the
transfer orbit. Upon reaching apoapsis of the transfer orbit a second impulse, ∆Iv2, is
applied, changing the orbit from an elliptic transfer orbit with periapsis r1 and apoap-
sis r2 to a circular orbit of radius r2. Because the first impulse changes the orbit from
a circular orbit of radius r1 to an elliptic orbit with periapsis r1 and apoapsis r2, the

*It is noted for completeness that for the case where r2 < r1 (that is, the case of a Hohmann transfer
from a larger circular orbit to a smaller circular orbit) the transfer has the same form as it does for the
case where r2 > r1, the only difference being that the directions of each of the two impulses are reversed
from the case where r2 > r1.
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Figure 5.1 Schematic of a two-impulse transfer between two co-planar circular orbits
of radii r1 and r2 where the transfer orbit is an ellipse with the same focus as that of
both the initial and terminal orbits.

magnitude of the first impulse is given as

∆v1 = ‖∆Iv1‖ =
√

2µ
r1
− µ
a
−
√
µ
r1

(5.5)

where √
2µ
r1
− µ
a
>
√
µ
r1

(5.6)

because a > r1. Now because the elliptic transfer orbit has periapsis and apoapsis
radii equal to r1 and r2, respectively, the semi-major axis of the elliptic transfer orbit
that results from the application of the first impulse is given as

a = r1 + r2

2
. (5.7)

Substituting a from Eq. (5.7) into (5.5), the magnitude of the first impulse is

∆v1 =
√

2µ
r1
− 2µ
r1 + r2

−
√
µ
r1
. (5.8)
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Equation (5.8) can be re-written as

∆v1 =
√

2µ(r1 + r2 − r1)
r1(r1 + r2)

−
√
µ
r1
=
√
µ
r1

(√
2r2

r1 + r2
− 1

)
(5.9)

Similarly, the magnitude of the second impulse is given as

∆v2 = ‖∆Iv2‖ =
√
µ
r2
−
√

2µ
r2
− µ
a

(5.10)

where it is noted that √
µ
r2
>

√
2µ
r2
− µ
a

(5.11)

because a < r2. Furthermore, it is noted for completeness that the semi-major axis
used in Eq. (5.10) is the same as that used Eq. (5.5) because the second impulse is
applied at the apoapsis of the elliptic transfer orbit. Substituting a from Eq. (5.7) into
(5.10), the magnitude of the second impulse is

∆v2 =
√
µ
r2
−
√

2µ
r2
− 2µ
r1 + r2

(5.12)

Then, following an approach similar to that used to simplify the expression for the
first impulse, Eq. (5.12) can be re-written as

∆v2 =
√
µ
r2
−
√

2µ(r1 + r2 − r2)
r2(r1 + r2)

=
√
µ
r2

(
1−

√
2r1

r1 + r2

)
(5.13)

The total impulse for the Hohmann transfer is transfer a spacraft from an initial cir-
cular orbit of radius r1 to a terminal circular orbit of radius r2 > r1 is the sum of the
impulses given in Eqs. (5.9) and (5.13), that is

∆vH = ∆v1 +∆v2 =
√
µ
r1

(√
2r2

r1 + r2
− 1

)
+
√
µ
r2

(
1−

√
2r1

r1 + r2

)
(5.14)

Suppose now that the total impulse ∆vH is re-written in terms of the quantity

R = r2

r1
, (5.15)

where it is noted that R is the ratio of the radius of the larger orbit to the radius of the
smaller orbit. Equation (5.14) can be re-written in terms of r1 and R as follows. First,
Eq. (5.14) can be re-written in terms of the ratio r2/r1 as

∆vH =
√
µ
r1

(√
2r2/r1

1+ r2/r1
− 1

)
+
√
µ
r1

√
r1

r2

(
1−

√
2

1+ r2/r1

)
. (5.16)

Then, substituting R from Eq. (5.15) into (5.16) gives

∆vH =
√
µ
r1

√ 2R
1+ R − 1

+√ µ
r1

√
1
R

1−
√

2
1+ R

 . (5.17)
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Then, factoring out the common factor
√
µ/r1 from each term in Eq. (5.17), ∆vH can be

written as

∆vH =
√
µ
r1

√ 2R
1+ R − 1

+
√

1
R

1−
√

2
1+ R

 . (5.18)

Suppose now that we define the initial circular speed as

vc1 =
√
µ
r1
. (5.19)

Normalizing the total impulse for the Hohmann transfer by vc1 gives

∆vH
vc1

=
√ 2R

1+ R − 1

+
√

1
R

1−
√

2
1+ R

 (5.20)

Figure 5.2 Schematic of a Hohmann transfer between two co-planar circular orbits
of radii r1 and r2. The transfer orbit is tangent at its periapsis to the initial orbit and
is tangent at its apoapsis to the terminal orbit.

5.4 Bi-Elliptic Transfer

A commonly used extension of the Hohmann transfer a three-impulse transfer known
as the bi-elliptic transfer. Consider again a co-planar transfer from an initial circular
orbit of radius r1 to a terminal circular orbit of radius r2. The key difference between
the bi-elliptic transfer and the Hohmann transfer is that the bi-elliptic transfer consists
of three impulses and two elliptic transfer orbits while the Hohmann transfer consists
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of two impulses and one elliptic transfer orbit. Similar to the Hohmann transfer, how-
ever, all three impulses that define the bi-elliptic transfer are applied tangentially at
either periapsis or apoapsis at either the initial or terminal orbit or one of the two
transfer orbits.

The first impulse, applied tangentially at a point on the initial circular orbit, places
the spacecraft onto a first elliptic transfer orbit whose apoapsis, ri, is larger than
r2 (that is, ri > r2 where r2 is the radius of the terminal circular orbit). The sec-
ond impulse, applied at the apoapsis of the first elliptic transfer orbit and places the
spaceacraft onto a second elliptic transfer orbit whose periapsis is equal to the radius
of the terminal circular orbit (that is, the periapsis of the second transfer orbit is equal
to r2. The third impulse, applied at the periapsis of the second transfer orbit, then
reduces the apoapsis from ri to the radius, r2, of the terminal orbit, thereby placing
the spacecraft in the terminal circular orbit of radius r2. A schematic of the bi-elliptic
transfer is shown in Fig. 5.3, where the radii of the initial and terminal circular orbits
are r1 and r2, respectively, r2 > r1, and the apoapsis of the first elliptic transfer orbit
is ri† The spacecraft is an initial circular orbit of radius r1. The first impulse, ∆Iv1, is
then applied, changing the orbit from the initial circular orbit of radius r1 to an elliptic
transfer orbit whose periapsis is r1 and whose apoapsis is ra1. The spacecraft then
travels from periapsis to apoapsis of the first elliptic transfer orbit. Upon reaching
apoapsis of the first elliptic transfer orbit a second impulse, ∆Iv2, is applied, changing
the orbit from the first elliptic transfer orbit with periapsis r1 and apoapsis ra1 to a
second elliptic transfer orbit with periapsis r2 and apoapsis ra1. The spacecraft then
travels from apoapsis to periapsis of the second elliptic transfer orbit. Upon reach-
ing periapsis of the second elliptic transfer orbit a third impulse, ∆Iv3, is applied,
changing the orbit from the second elliptic transfer orbit with periapsis r2 and apoap-
sis ra1 to the terminal circular orbit of radius r2. It is noted that, because the first
two impulses increase one of the apses (specifically, the first impulse increases apoap-
sis while the second impulse increases periapsis) while the third impulse decreases the
apoapsis of the second transfer elliptic orbit, the first two impulses are posigrade while
the third impulse is retrograde. Similar to the approach developed to obtain the total
impulse for the Hohmann transfer, because each impulse of the bi-elliptic transfer is
applied tangentially, all vector quantities can be replaced by scalars in the derivation
that follows.

The first impulse of the bi-elliptic transfer, applied tangentially at the initial circular
orbit of radius r1, increases apoapsis and places the spacecraft onto an elliptic orbit
with periapsis radius r1 and apoapsis radius ri. Therefore, this first impulse is given
as

∆v1 = ‖∆Iv1‖ =
√

2µ
r1
− µ
a1
−
√
µ
r1
, (5.21)

where a1 = (r1 + ri)/2 is the semi-major axis of the first elliptic transfer orbit. Thus,
∆v1 can be written as

∆v1 =
√

2µ
r1
− 2µ
r1 + ri −

√
µ
r1
=
√
µ
r1

(√
2ri
r1 + ri − 1

)
. (5.22)

†It is noted for completeness that for the case where r2 < r1 (that is, the case of a transfer from a
larger circular orbit to a smaller circular orbit) the transfer has the same form as it does for the case
where r2 > r1, the only difference being that the directions of each of the three impulses are reversed
from the case where r2 > r1.
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The second impulse of the bi-elliptic transfer, applied tangentially at the apoapsis of
the first elliptic transfer orbit, increases periapsis and places the spacecraft onto a
second elliptic orbit with periapsis radius r2 and apoapsis radius ri. Therefore, this
second impulse is given as

∆v2 = ‖∆Iv2‖ =
√

2µ
ri
− µ
a2
−
√

2µ
ri
− µ
a1
, (5.23)

where a2 = (r2+ri)/2 is the semi-major axis of the second elliptic transfer orbit. Thus,
∆v2 can be written as

∆v2 = ‖∆Iv2‖ =
√

2µ
ri
− 2µ
r2 + ri −

√
2µ
ri
− 2µ
r1 + ri

=
√
µ
ri

(√
2r2

r2 + ri −
√

2r1

r1 + ri

)
.

(5.24)

The third impulse of the bi-elliptic transfer, applied tangentially at the periapsis of the
second elliptic transfer orbit, decreases apoapsis and places the spacecraft into the
terminal circular orbit of radius r2. Noting that the third impulse is retrograde (in that
it decreases apoapsis), this third impulse is given as

∆v3 = ‖∆Iv3‖ =
√

2µ
r2
− µ
a2
−
√
µ
r2

(5.25)

Consequently, ∆v3 can be written as

∆v3 = ‖∆Iv3‖ =
√

2µ
r2
− 2µ
r2 + ri −

√
µ
r2
=
√
µ
r2

(√
2ri
r2 + ri − 1

)
. (5.26)

The total impulse for the bi-elliptic transfer is then obtained by adding the results of
Eqs. (5.22), (5.24), and (5.26) as

∆vBE = ∆v1 +∆v2 +∆v3. (5.27)

Suppose now that we define the quantity

S = ri
r2
. (5.28)

The the first impulse, given in Eq. (5.22) can then be written as

∆v1 =
√
µ
r1

(√
2ri
r1 + ri − 1

)
=
√
µ
r1

(√
2ri/r2

r1/r2 + ri/r2
− 1

)

=
√
µ
r1

(√
2S

1/R + S − 1

)
=
√
µ
r1

√ 2RS
1+ RS − 1

 . (5.29)

Next, the second impulse, given in Eq. (5.24), can be written as

∆v2 =
√
µ
ri

(√
2r2

r2 + ri −
√

2r1

r1 + ri

)
=
√
µ
r1

r1

r2

r2

ri

(√
2

1+ ri/r2
−
√

2r1/r2

r1/r2 + ri/r2

)

=
√
µ
r1

√
1
RS

√ 2
1+ S −

√
2/R

1/R + S

 =√ µ
r1

√
1
RS

√ 2
1+ S −

√
2

1+ RS

 .
(5.30)
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Finally, the third impulse, given in Eq. (5.26), can be written as

∆v3 =
√
µ
r2

(√
2ri
r2 + ri − 1

)
=
√
µ
r1

r1

r2

(√
2ri/r2

1+ ri/r2
− 1

)

=
√
µ
r1

√
1
R

√ 2S
1+ S − 1

 =√ µ
r1

√ 2S
R + RS −

√
1
R

 (5.31)

Adding Eqs. (5.29)–(5.31) and factoring out the common factoring of
√
µ/r1, the total

impulse for the bi-elliptic transfer in terms of the ratios R and S is given as

∆vBE =
√
µ
r1

√ 2RS
1+ RS − 1

+
√

1
RS

√ 2
1+ S −

√
2

1+ RS

+
√ 2S

R + RS −
√

1
R

 .
(5.32)

Recal now from Eq. (5.19) that the vc1 =
√
µ/r1 is the initial circular speed. Normalizing

the total impulse of the bi-elliptic transfer by vc1 gives

∆vBE
vc1

=
√ 2RS

1+ RS − 1

+
√

1
RS

√ 2
1+ S −

√
2

1+ RS

+
√ 2S

R + RS −
√

1
R

 .
(5.33)
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Figure 5.3 Schematic of a Bi-Elliptic transfer between two co-planar circular orbits
of radii r1 and r2. The transfer consists of three impulses and two transfer orbits. The
first impulse places the spacecraft onto a first elliptic transfer orbit whose apoapsis
is larger than the radius of the terminal circular orbit. The second impulse places the
spacecraft onto a second elliptic transfer orbit whose periapsis is equal to the radius
of the terminal circular orbit. The third impulse reduces the apoapsis of the second
transfer orbit to the radius of the terminal circular orbit, thereby placing the spacecraft
into the final circular orbit of radius r2.
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5.5 Bi-Parabolic Transfer

Consider now a limiting case of a bi-elliptic transfer called the bi-parabolic transfer.
The bi-parabolic transfer is obtained by letting ri →∞ which implies equivalently that
S →∞. First, normalizing the impulses in Eqs. (5.29)–(5.31) by vc1 =

√
µ/r1 gives

∆v1

vc1
=

√ 2RS
1+ RS − 1

 , (5.34)

∆v2

vc1
=

√
1
RS

√ 2
1+ S −

√
2

1+ RS

 , (5.35)

∆v3

vc1
=

√ 2S
R + RS −

√
1
R

 . (5.36)

Next, Eqs. (5.34)–(5.36) can be re-written as

∆v1

vc1
=

(√
2R

1/S + R − 1

)
, (5.37)

∆v2

vc1
=

√
1
RS

(√
2/S

1/S + 1
−
√

2/S
1/S + R

)
, (5.38)

∆v3

vc1
=

√ 2
R/S + R −

√
1
R

 . (5.39)

Then, taking limS →∞ in Eqs. (5.37)–(5.39) gives

∆v1

vc1
=
√

2− 1, (5.40)

∆v2

vc1
= 0, (5.41)

∆v3

vc1
=

√
1
R

(√
2− 1

)
. (5.42)

Therefore, the total impulse for the bi-parabolic transfer is given as

∆vBP =
√
µ
r1

(√
2− 1

)1+
√

1
R

 . (5.43)

Equivalently, the total impulse of the bi-parabolic transfer normalized by the initial
circular speed vc1 =

√
µ/r1 is given as

∆vBP
vc1

=
(√

2− 1
)1+

√
1
R

 . (5.44)

It is seen that the bi-parabolic transfer is a two-impulse limiting case of the three-
impulse bi-elliptic transfer. It is noted, however, that the bi-parabolic transfer is phys-
ically unrealizable because the transfer consists of outbound and inbound parabolic
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trajectories for which the spacecraft needs to travel an infinite distance (thus requiring
an infinite amount of time). While the bi-parabolic transfer is physically unrealizable, it
is a good approximation of a bi-elliptic transfer with a sufficiently large transfer orbit
apoapsis ri because when ri is sufficiently large the second impulse of the bi-elliptic
transfer is small and can be neglected.

5.6 Comparison of Co-Planar Impulsive Transfers

A comparison of the performance of the co-planar Hohmann, bi-elliptic, and bi-parabolic
transfers described in Sections 5.3–5.5 is now made. Figure 5.4(a) shows the normal-
ized impulse (that is, the impulse normalized by the initial circular speed vc1 =

√
µ/r1)

for the Hohmann transfer, the bi-elliptic transfer with S = (2,5,10), and the bi-
parabolic transfer as a function of the ratio R = r2/r1 between the two circular orbits.
It is seen that for smaller values of R the Hohmann transfer outperforms either the bi-
elliptic or the bi-parabolic transfer. Note from Fig. 5.4(b), however, that beyond critical
values of R the bi-elliptic and bi-parabolic transfers outperform the Hohmann transfer.
Specifically, these critical values are as follows. First, for 1 < R < 11.94 the Hohmann
transfer is the absolute minimum impulse transfer between two circular orbits. For
R > 11.94 the bi-parabolic transfer outperforms the Hohmann transfer. Finally, for
R > 15.58 any bi-elliptic transfer with S > 1 outperforms the Hohmann transfer. Fi-
nally, for 11.94 < R < 15.58 the bi-elliptic is more economical than the Hohmann
transfer only if the apoapsis ri of the two elliptic transfer orbits is sufficiently large.
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Figure 5.4 Comparisons of normalized total impulse, ∆v/vc1, vs. R = r2/r1 for
the Hohmann transfer, bi-elliptic transfer with S = ri/r2 = (2,5,10), and bi-parabolic
transfer.

5.7 Non-Co-Planar Impulsive Transfer

Until now the focus has been on co-planar circle-to-circle impulsive orbital transfer. In
many applications of orbital transfer, however, it is necessary to change the inclination
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of the orbit. Inclination change on a elliptic orbit has one of two forms. The first form
is an impulse that changes only the inclination of the orbit without changing the energy
of the orbit (that is, neither the size nor the shape of the orbit is changed). The second
form of an impulsive inclination change combines an inclination change impulse with
an impulse that changes the energy of the orbit (that is, the part of the impulse that
changes the energy of the orbit changes the size and shape of the orbit). The next two
sections focus on both types of inclination change impulses.

5.7.1 Impulse That Changes Orbital Plane

Suppose we consider the problem of using a single impulsive maneuever ∆Iv applied
at a point along a circular orbit in order to change the plane of the orbit by an angle
θ. Suppose further that the velocity of the spacecraft the instants before the impulse
∆Iv is applied is Iv− while the velocity of the spacecraft the instant after the impulse
is applied is denoted Iv+. Because objective is to rotate the plane of the orbit, the
magnitudes of Iv− and Iv+ are the same, that is, ‖Iv−‖ = ‖Iv−‖ = v . Figure 5.5(a)
provides a schematic of an impulse ∆Iv applied purely for the purpose of changing
the plane of the circular orbit. It is seen from Fig. 5.5(a) that the pre-impulse and post-
impulse velocities together with the impulse ∆Iv form an isosceles triangle where the
pre-impulse and post-impulse velocities are the two sides of the triangle with equal-
length sides. Consequently, bisecting the angle θ as shown in Fig. 5.5(b) creates two
right-triangles where the hypotenuse has a magnitude v while the side opposite the
angle θ/2 has a magnitude ∆v/2 = ∥∥∆Ivi∥∥ /2. Thus, the magnitude v and ∆v/2 are
related to the angle θ/2 as

sin
θ
2
= ∆v/2

v
. (5.45)

Solving Eq. (5.45) for ∆vi gives

∆v = 2v sin
θ
2
. (5.46)

An impulse of the form given in Eq. (5.46) is called a cranking impulse and the process
of changing the plane of the orbit using such an impulse is called orbit cranking. It
is seen from Eq. (5.46) that, for a given amount of rotation of the orbital plane θ, the
impulse ∆v is proportional to the speed v .

Now it is noted that the angle θ of a cranking impulse as given in Eq. (5.46) that
defines the amount by which the orbit plane is rotated is in general not equal to the
change in the orbital inclination. In other words, in general it is not the case that
θ = ∆i, where ∆i is the amount of the inclination change. In order to see that in
general θ ≠ ∆i, consider the Fig. 5.6 that shows two non-co-planar circular orbits of
the same size (that is, r1 = r2 = r ) with inclinations i1 and i2, respectively. Consider
further that the orbits have longitudes of ascending nodesΩ1 andΩ2, respectively. The
specific angular momenta of the first and second orbits are given in planet-centered
inertial coordinates as

Ih1 = h(sin i1 sinΩ1Ix − sin i1 cosΩ1Iy + cos i1Iz),
Ih2 = h(sin i2 sinΩ2Ix − sin i2 cosΩ2Iy + cos i2Iz),

(5.47)

where it is noted that ‖Ih1‖ = ‖Ih2‖ = h because r1 = r2. Taking the scalar product of
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(a) Inclination change impulse, ∆Ivi (b) Bisection of inclination change impulse, ∆Ivi

Figure 5.5 Impulse, ∆Iv, applied at either periapsis or apoapsis of an orbit in order
to change the orbital inclination by an angle ∆i.

Ih1 and Ih2 and simplifying the result gives

Ih1 · Ih2 = h2(sin i1 sinΩ1 sin i2 sinΩ2 + sin i1 cosΩ1 sin i2 cosΩ2 + cos i1 cos i2)

= h2(sin i1 sin i2(sinΩ1 sinΩ2 + cosΩ1 cosΩ2)+ cos i1 cos i2)

= h2(sin i1 sin i2 cos(Ω2 −Ω1)+ cos i1 cos i2)

= h2(sin i1 sin i2 cos∆Ω + cos i1 cos i2)

= h2(cos i1 cos i2 + cos∆Ω sin i1 sin i2),
(5.48)

where ∆Ω = Ω2 −Ω1. But from the definition of the scalar product, the scalar product
of the two angular momenta is also given as

Ih1 · Ih2 = h2 cosθ (5.49)

Setting the results of Eqs. (5.48) and (5.49) equal gives

cosθ = cos i1 cos i2 + cos∆Ω sin i1 sin i2 (5.50)

Suppose now that ∆Ω = 0. Then Eq. (5.50) simplifies to

cosθ = cos i1 cos i2 + sin i1 sin i2 = cos(i2 − i1) = cos∆i, (5.51)

where ∆i = i2 − i1. Equation (5.51) implies that θ = i2 − i1 only in the case where
the longitudes of the ascending nodes of the two orbits are equal. Furthermore, in the
case where Ω2 = Ω1, Eq. (5.51) implies that the rotation of the orbital plane by the
angle θ (which, as stated, is equal to ∆i when Ω2 = Ω1) must be performed at the line
of nodes. In other words, the angle θ that defines the amount by which the plane of
a circular orbit is changed by a cranking impulse ∆Iv is equal to the change in the
orbital inclination only if the longitudes of the ascending node of both orbits are the
same and the cranking impulse is applied at the ascending node.
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Figure 5.6 Schematic showing two orbits with different inclinations and different
longitudes of ascending node.

5.7.2 Impulse That Combines Orbit Plane Rotation and Energy Change

Consider now an impulse ∆Iv that both rotates the orbital plane and changes the
energy of the orbit. Let Iv− and Iv+ be the inertial velocity of the spacecraft the
instant before and the instant after the impulse ∆Iv is applied. Furthermore, because
the impulse ∆Iv both rotates the orbit plane and changes the energy, the pre-impulse
and post-impulse speed will be different, that is, v− = ‖Iv−‖ ≠ ‖Iv+‖ = v+. Figure 5.7
shows the velocity of the spacecraft the instant before and the instant after the impulse
is applied along with the impulse itself. It is seen from Fig. 5.7 that the impulse ∆Iv is
given as

∆Iv = Iv+ − Iv−. (5.52)

Noting that the angle between Iv− and Iv+ is θ, the magnitude of the impulse ∆Iv is
obtained from the law of cosines as

∆v2 = ‖∆Iv‖2 = (v−)2 + (v+)2 − 2v−v+ cosθ. (5.53)

Figure 5.7 shows the impulse ∆Iv that simultaneously rotates both the orbit plane and
the energy. It is noted that the orbital energy the instant before the application of the
impulse ∆Iv is based on the pre-impulse orbital speed v− while the orbital energy the
instant after the application of the impulse ∆Iv is based on the post-impulse orbital
speed v+. Finally, it is emphasized again that the impulse ∆Iv shown in Fig. 5.7 is a
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combined plane change and energy change impulse that corresponds to that given in
Eq. (5.53).

Figure 5.7 ∆Iv, that rotates orbit plane and changes energy simultaneously.

5.7.3 Two-Impulse Transfer Between Non-Co-Planar Circular Orbits

Sections 5.7.1 and 5.7.2 provide elements that can be used to construct a two-impulse
transfer between two non-co-planar circular orbits with radii r1 and r2, respectively,
where it is assumed that r2 > r1. Note first that if the planes of two orbits have a
common point (in this case, both orbits share a common focus), then the two orbits
must intersect in a line. The unit vector along the line of intersection between the
two orbits is determined as follows. First, because the specific angular momentum of
each orbit lies normal to the orbit plane of the respective orbit, the vector product Ih1

and Ih2, Ih1 × Ih2 must lie in the plane of both orbits because Ih1 × Ih2 is orthogonal
to both Ih1 and Ih2. Therefore, the line of intersection in the direction of Ih1 × Ih2.
Recalling the assumption that the two orbits are non-co-planar, the orbital inclinations
of the two orbits are different (that is, i2 ≠ i1). Then, the unit vector along the line of
intersection between the two orbits, denoted `, is defined as the unit vector

` =
Ih1 × Ih2

‖Ih1 × Ih2‖
. (5.54)

It is noted that ` will be undefined in the case where the two orbits are co-planar
because Ih1 × Ih2 will be zero for the case of co-planar orbits.

Using the line of intersection ` as defined in Eq. (5.54) as a starting point, consider
now a two-impulse orbit transfer between two non-co-planar circular orbits. First,
because any feasible orbit transfer must intersection both orbits, it is necessary that
any impulse that transfers the spacecraft between the two orbits occur at a position
on the orbit that lies along the line of intersection between the two orbits. This last
fact leads to the following construction of a two-impulse orbital transfer between non-
co-planar orbits. First, compute the line of intersection ` as given in Eq. (5.54) using
the angular momenta Ih1 and Ih2 associated with the initial and terminal orbits. Next,
let r1 be the position on the initial orbit where the first impulse ∆Iv, is applied. It is
noted that the position r1 is given as

r1 = r1`, (5.55)
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where it is recalled that r1 is the radius of the initial circular orbit. Then, the first
impulse raises the apoapsis of the orbit such that the semi-major axis and eccentricity
of the transfer orbit are given as

a = r1 + r2

2
, (5.56)

e = r2 − r1

r2 + r1
. (5.57)

The magnitude ∆v1 of the first impulse ∆Iv1 is then given as

∆v1 =
√

2µ
r1
− µ
a
−
√
µ
r1
=
√

2µ
r1
− µ
a
− v−1 , (5.58)

where, because the initial orbit is circular with radius r1, the circular speed on the
initial orbit is given as

v−1 =
√
µ
r1
. (5.59)

Now, the direction of the first impulse is equal to the direction of the inertial velocity
at the point of application of ∆Iv1. Because the first impulse is applied tangentially
at the position r1 and Ih1 is orthogonal to r1, the unit vector in the direction of the
inertial velocity at r1 on the first orbit, denoted u1, is given as

u1 =
Ih1 × `∥∥∥Ih1 × `

∥∥∥ =
Ih1 × `∥∥∥Ih1

∥∥∥ , (5.60)

where it is noted that r1 lies along the direction ` given in Eq. (5.54) and
∥∥∥Ih1 × `

∥∥∥ =∥∥∥Ih1

∥∥∥ because Ih1 and ` are orthogonal and ` is a unit vector. The inertial velocity the

instant before the first impulse is applied, denoted Iv−1 , is then obtained as

Iv−1 = v−1 u1, (5.61)

where v−1 is obtained from Eq. (5.59). The first impulse of the transfer is then given as

∆Iv1 = ∆v1u1, (5.62)

where ∆v1 is obtained from Eq. (5.58). Adding the results of Eqs. (5.61) and (5.62), the
inertial velocity the instant after the application of the first impulse, denoted Iv+1 , is
given as

Iv+1 = Iv−1 +∆Iv1. (5.63)

It is noted again that ∆Iv1 in Eq. (5.62) raises apoapsis because it is applied at the
periapsis of the transfer orbit. Furthermore, the impulse ∆Iv1 does not change the
orbital plane. Now, because the spacecraft is moving more slowly at apoapsis than at
periapsis, the second impulse, ∆Iv2, performed at the apoapsis of the transfer orbit
simultaneously changes the inclination and raises periapsis to the radius r2 of the
terminal orbit. The velocity of the spacecraft the instant before the first impulse is
applied, denoted Iv−2 , must lie in the same orbital plane as that of the initial inertial
velocity, but in the direction opposite that of Iv1. Furthermore, because the second
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impulse is applied at the apoapsis of the transfer orbit, the speed of the spacecraft the
instant before the second impulse is applied, denoted v−2 , is given as

v−2 =
√

2µ
r2
− µ
a
, (5.64)

where the semi-major axis a in Eq. (5.64) is obtained from Eq. (5.56). Therefore, the
inertial velocity the instant before the application of the second impulse, denoted Iv−2
is given as

Iv−2 = −v−2 u1 (5.65)

and v−2 is obtained from Eq. (5.64). Note that, because the terminal orbit is circular
with a radius r2, the speed of the spacecraft on the terminal orbit, denoted v+2 , is
given as

v+2 =
√
µ
r2
. (5.66)

Note that, if the direction of the inertial velocity the instant after the second impulse
can be determined, then the second impulse, ∆Iv2, can also be determined. It is ob-
served that the inertial velocity the instant after the second impulse is applied must
lie in the plane of the terminal orbit at the apoapsis of the transfer orbit. The position
of the spacecraft at the apoapsis of the transfer orbit must have a magnitude r2 (that
is, the apoapsis of the transfer orbit is r2) and must lie in the direction opposite `.
Therefore, the direction of the inertial velocity the instant after the second impulse is
applied, denoted u2, is given as

u2 =
Ih2 × (−`)
‖Ih2 × (−`)‖

= −
Ih2 × `
‖Ih2‖

, (5.67)

where ‖Ih2 × `‖ = ‖Ih2‖ in Eq. (5.67) because Ih2 and ` are orthogonal and ` is a unit
vector. Therefore, the inertial velocity the instant after the second impulse is applied
is given as

Iv+2 = v+2 u2, (5.68)

where v+2 is obtained from Eq. (5.66). The second impulse, ∆Iv2, is then given as

∆Iv2 = Iv+2 − Iv−2 . (5.69)

The two velocities, Iv−2 and Iv+2 , can then be used to determine the angle θ by which

the velocity Iv−2 is rotated (where, from the result of Section 5.7.1, the angle θ is in
general not equal to ∆i, where ∆i is the change in the orbital inclination). Specifically,
the angle θ that defines the rotation of Iv−2 to attain Iv+2 is given as

Iv+2 · Iv−2 = v+2 v−2 cosθ (5.70)

which implies that

θ = cos−1

( Iv+2 · Iv−2
v+2 v

−
2

)
. (5.71)

Alternatively, the angle θ can be computed using the initial and terminal specific an-
gular momenta as

Ih1 · Ih2 =
∥∥∥Ih1

∥∥∥∥∥∥Ih2

∥∥∥ = h1h2 cosθ (5.72)
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which implies that

θ = cos−1

( Ih1 · Ih2

h1h2

)
. (5.73)

Again, it is re-emphasized that θ ≠ ∆i. Finally, it is noted for completeness that the
magnitude of ∆Iv2 in Eq. (5.69) is given as

(∆v2)2 =
(
v−2
)2 + (v+2 )2 − 2v−2 v

+
2 cosθ (5.74)

or, equivalently, as

∆v2 =
∥∥∥∆Iv2

∥∥∥ = ∥∥∥Iv+2 − Iv−2 ∥∥∥ . (5.75)

A schematic of the two-impulse non-co-planar transfer between two circular orbits of
radii i1 and i2 is shown in Fig. 5.8.

Figure 5.8 Schematic of two-impulse non-co-planar transfer between two circular
orbits with different inclinations.
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Problems for Chapter 5

5–1 Suppose that it is desired to transfer a spacecraft from an initial circular orbit
of radius r1 to a terminal co-planar circular orbit of radius r2. Suppose that it is de-
sired to use either a Hohmann transfer, a bi-elliptic transfer, or a bi-parabolic transfer.
Determine the following information to decide which transfer to use.

(a) For a Hohmann transfer, determine expressions for the magnitude of the two im-
pulses, ∆v1 and ∆v2. Nondimensionalize the two impulses by determining the
ratios ∆v1/vc1 and ∆v2/vc1 and as functions of the quantity R = r2/r1.

(b) For a bi-elliptic transfer, determine expressions for the magnitude of the three
impulses, ∆v1, ∆v2, and ∆v3. Nondimensionalize the three impulses by determin-
ing the ratios ∆v1/vc1, ∆v2/vc1, and ∆v3/vc1 and as functions of the quantities
R = r2/r1 and S = ri/r2 (where ri is the apoapsis of the intermediate transfer orbit
used in the bi-elliptic transfer).

(c) For a bi-parabolic transfer, determine expressions for the magnitude of the two
impulses, ∆v1 and ∆v2. Nondimensionalize the two impulses by determining the
ratios ∆v1/vc1 and ∆v2/vc1 and as functions of the quantity R = r2/r1.

(d) Make the following two plots in MATLAB of the normalized impulse, ∆v/vc1, for
each transfer as a function of R, where R is the “x”–axis and ∆v/vc1 is the “y”–
axis. For use R ∈ [1,20] and do not change the default settings for the “y”–axis in
MATLAB. For the second plot, change the range for R to be such that R ∈ [10,16]
and change the range for ∆v/vc1 to be ∆v/vc1 ∈ [0.51,0.55]. When making both
plots, use the values S = (2,5,10,11,12,15) for the bi-elliptic transfer. For each
plot place all of the lines on the same plot (that is, put the Hohmann transfer, all
bi-elliptic transfers, and the bi-parabolic transfer on the same plot).

5–2 Suppose now it is desired to determine the values of the ratio R = r2/r1 that de-
termines crossover points where the Hohmann transfer becomes less economical that
either a bi-elliptic transfer or the bi-parabolic transfer. Using the results of Question 1,
solve the following root-finding problems using either the MATLAB root-finder fsolve
or your own root-finder:

(a) the value of R where the total impulse of the Hohmann transfer is the same as the
total impulse of the bi-parabolic transfer;

(b) the values of R where the total impulse of the Hohmann transfer is the same as the
total impulse of the bi-elliptic transfers for S = ri/r2 = (2,5,10,11,12,15) (where
ri is the apoapsis of the intermediate transfer orbit used in the bi-elliptic transfer
as given in Question 1);

(c) Plot the roots obtained in part (b) as a function of S.

5–3 A spacecraft is in a circular orbit that has a speed of unity in canonical units (that
is, µ = 1). From this starting orbit the goal is to rendezvous with a spacecraft that in
another co-planar circular orbit with a speed of 0.5 canonical units. Determined which
of the Hohmann, bi-elliptic, or bi-parabolic transfer accomplishes the orbit transfer
with the lowest impulse. Using MATLAB, plot the initial orbit, the terminal orbit, and
the transfer orbit on the same two-dimensional plot. Include the impulses required to
accomplish the orbit transfer on your plot using the MATLAB command quiver.
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5–4 Consider a spacecraft in a circular low-Earth orbit with altitude 300 km, inclina-
tion 57 deg, and longitude of the ascending node 60 deg. Suppose that the objective
is to transfer the spacecraft to a geostationary earth orbit using a Hohmann trans-
fer. Knowing that a geostationary orbit is a circular orbit with a period of 23.934 hours
based on a sidereal day (as opposed to a solar day), determine the following quantities:

(a) The magnitude of each impulse that contributes to the total ∆v (in km · s−1) re-
quired to complete the transfer, where the inclination change is performed at the
apoapsis of the transfer orbit (that is, the second impulse both circularizes the final
orbit and accomplishes the inclination change);

(b) The total ∆V required to complete the transfer;

(c) The time (in hours) required to complete the transfer;

(d) Assuming that the rocket engine has a specific impulse of 320 s, determine the ratio
of the initial and terminal masses due to the magnitude of each impulse obtained
in part (a).

(e) Using MATLAB, plot on the same three-dimensional plot the initial orbit, the ter-
minal orbit, the transfer orbit, and the line of intersection between the initial and
terminal orbits. Include the impulses required to accomplish the orbit transfer on
your plot using the MATLAB command quiver3.

(f) Does changing the longitude of the ascending node change the location on the
initial orbit where the transfer starts?

5–5 A Global Positioning System (GPS) spacecraft is launched from the Eastern Test
Range (ETR) at the Cape Canaveral Air Force Station and initially inserted into a circular
low-Earth orbit (LEO) at an altitude of 350 km with an orbital inclination of 28 deg.
From this initial orbit the goal is to transfer the spacecraft to a final circular GPS orbit
of radius 26558 km with an orbital inclination of 55 deg using a two-impulse transfer
such that the impulses are applied along the line of intersection between the two orbits.
Determine the following information:

(a) The line of intersection in Earth-centered inertial (ECI) coordinates.

(b) The positions of the spacecraft r1 and r2 that define the locations where the two
impulses ∆Iv1 and ∆Iv2 are applied.

(c) The total ∆v (in km · s−1) if the required inclination change is performed purely at
the apoapsis of the transfer orbit (that is, the second impulse both circularizes the
final orbit and accomplishes the inclination change).

(d) The time of flight (in hours) of the transfer ellipse.

(e) The eccentricity of the transfer orbit.

(f) The angle θ that defines the rotation of the orbital plane due to the application of
the second impulse.

(g) Using MATLAB, plot on the same three-dimensional plot the initial orbit, the ter-
minal orbit, the transfer orbit, and the line of intersection between the initial and
terminal orbits. Include the impulses required to accomplish the orbit transfer on
your plot using the MATLAB command quiver3.
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Assume in your answers that the longitude of the ascending node of the initial and
terminal orbits is the same.

5–6 A spacecraft is launched from the Kennedy Space Center in Florida into an initial
circular low-Earth orbit (LEO) with altitude 300 km and an inclination i = 28.5 deg.
The goal is to transfer the spacecraft to a geostationary orbit (GEO), where it is noted
that a geostationary orbit is an circular equatorial orbit with a period of 24 hours).
Suppose that it is desired to transfer the spacecraft from the given LEO to GEO using a
two-impulse transfer that consists of two energy change impulses along with up to two
inclination change impulses. Suppose further that f and 1 − f denote, respectively,
the fraction of the inclination change that is accomplished at the initial LEO and the
apoapsis of the transfer orbit (that is, the inclination change is divided into an inclina-
tion change that is accomplished at the radius of the initial LEO while the remainder
of the inclination change is accomplished at the apoapsis of the transfer orbit). Using
the information provided, determine the following:

(a) The magnitude of the total impulse assuming that all of the inclination change is
accomplished at the apoapsis of the elliptic transfer orbit;

(b) The magnitude of the total impulse assuming that all of the inclination change is
accomplished at the initial LEO;

(c) A two-dimensional plot in MATLAB that shows the total impulse normalized by the
initial circular speed (that is ∆v/vc1) as a function of the fraction f of the total
inclination change that is accomplished at the initial LEO.

(d) From the plot generated in part (c) determine the value of f that results in the
smallest total impulse for the maneuver.

In obtaining the plot in part (c) above, use increments of 0.01 for f . In other words,
solve for the total impulse in increments of 0.01 for f ∈ [0,1].
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Chapter 6

Interplanetary Orbital Transfer

6.1 Introduction

An important aspect of orbital transfer arises when a spacecraft is transferred from an
orbit about an initial planet and inserted into an orbit about a terminal planet. Any or-
bital transfer where the centrally attracting planet about which it is orbiting is referred
to as an interplanetary transfer. In this chapter interplanetary transfers are consid-
ered using a so called patched conic method. The patched conic method relies on an
approximation known as the sphere of influence, where the sphere of influence is the
locus of points such that the force of gravitational attraction of a particular planet on
the spacecraft dominates the force of gravitational attraction of the Sun on the space-
craft. The patched conic method enables using a series of two-body approximations
where the spacecraft is considered to be under the gravitational influence of either a
departure or arrival planet when the spacecraft lies within the sphere of influence of
that planet and is under the gravitational influence of only the Sun when the spacecraft
lies outside of the sphere of influence of any planet. First, an interplanetary Hohmann
transfer between two planets is developed. Second, rendezvous opportunities that
provide the appropriate timing with an arrival planet from a departure planet are con-
sidered using the interplanetary Hohmann transfer as the basis of such a rendezvous
opportunity. Third, the sphere of influence of a planet is derived assuming that the
spacecraft is under the influence of both a planet that orbits the Sun and the Sun it-
self. Fourth, the patched conic approximation method is developed. The patched conic
method is divided into two parts: planetary departure and planetary arrival. In plane-
tary departure, the conditions are developed that make it possible for the spacecraft to
leave the sphere of influence of a departure planet. Similarly, in planetary arrival, the
conditions are developed that enable a spacecraft to enter the sphere of influence of
an arrival planet. The patched conic method is developed for the case where a space-
craft departs from an inner planet and arrives at an outer planet and the case where a
spacecraft departs from an outer planet and arrives at an inner planet. In the case of
planetary departure the spacecraft must leave the sphere of influence of the departure
planet along a hyperbolic trajectory relative to the departure planet. Similarly, in the
case of planetary arrival the spacecraft must enter the sphere of influence of the ar-
rival planet along a hyperbolic trajectory relative to the departure planet. Because the
planet is moving along a hyperbolic trajectory relative to an arrival planet, two options
are possible. The first option is that a capture impulse can be applied in order to place
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the spacecraft into an orbit relative to the arrival planet. The second options is that
the spacecraft can perform a planetary flyby, also known as a gravity assist, that will
enable the velocity of the spacecraft relative to the Sun be changed without the need to
consume any fuel (that is, the impulse due to the planetary flyby is obtained without
propulsion). The planetary flyby can either send the spacecraft further from the Sun or
closer to the Sun depending upon whether the intent of the gravity assist is to transfer
the spacecraft to an outer planet or an inner planet.

6.2 Interplanetary Hohmann Transfer

An interesting feature of most of the planets in the solar system is that they lie in
nearly the same orbital plane as the ecliptic plane (that is, the plane that contains the
orbit of the Earth). The greatest deviations in inclination from the inclination of the
orbit of the Earth are found in the innermost planet, Mercury, which has an inclination
of 7 deg, and the dwarf planet, Pluto, which has an inclination of 17 deg. All of the
other planets have inclinations that are within 3.5 deg of the ecliptic plane. Because
the orbital inclinations of the planets are close to the orbital inclination of the Earth,
it will be assumed for simplicity in all of the derivations that follow that all planets lie
in the same orbital plane.

As a starting point for interplanetary transfers, consider two planets in co-planar
circular orbits relative to the Sun. The radius of the orbit of the first planet, which
will be denoted the departure planet, is R1, while the radius of the orbit of the second
planet, which will be denoted the arrival planet, is R2. Suppose further R2 > R1, that
is, the departure planet is, relatively speaking, the inner planet while the arrival planet
is the outer planet). Furthermore, let the gravitational parameter of the Sun be denoted
µs . Taking the Sun to be an inertial reference frame, the circular speed of the departure
planet relative to the Sun is given as

Vc1 =
√
µs
R1
. (6.1)

Suppose now that a spacecraft has been placed onto a heliocentric transfer orbit from
the departure planet such that the semi-major axis of the transfer orbit is a = (R1 +
R2)/2. It is seen that the periapsis of this heliocentric orbit, where the periapsis is
of the heliocentric orbit is denoted perihelion, the speed of the spacecraft on this
heliocentric transfer orbit is given as

Vp =
√

2µs
R1
− µs
a
=
√

2µs
R1
− 2µs
R1 + R2

=
√
µs
R1
=
√
µs
R1

√
2R2

R1 + R2
(6.2)

The departure impulse, applied at perihelion, that raises the apohelion of from R1 to
a, thus placing the spacecraft onto the aforementioned heliocentric transfer orbit, is
the difference between Vp given in Eq. (6.1) and Vc1 given in Eq. (6.2), that is,

∆VD = Vp − Vc1 =
√
µs
R1

√
2R2

R1 + R2
−
√
µs
R1
=
√
µs
R1

(√
2R2

R1 + R2
− 1

)
. (6.3)

Next, the circular speed of the arrival planet relative to the Sun is given as

Vc2 =
√
µs
R2
. (6.4)
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Furthermore, the speed of the spacecraft at the apohelion of the transfer orbit is given
as

Va =
√

2µs
R2
− µs
a
=
√

2µs
R2
− 2µs
R1 + R2

=
√
µs
R2

√
2R1

R1 + R2
. (6.5)

Then, the impulse required in order to place the spacecraft into a circular heliocentric
orbit of radius R2 is the difference between the apohelion speed, Va, given in Eq. (6.5)
and the circular speed of the arrival planet, Vc2, that is,

∆VA =
√
µs
R2
−
√
µs
R2

√
2R1

R1 + R2
=
√
µs
R2

(
1−

√
2R1

R1 + R2

)
. (6.6)

It is noted that if the departure planet is the outer planet while the arrival planet is
the inner planet then the impulses ∆VD and ∆VA are in the opposite directions from
those given Eqs. (6.3) and (6.6). Finally, it is important to note that an interplanetary
Hohmann transfer must be timed appropriately in order to leave the departure planet
at a time such that the arrival planet it is appropriately located when the spacecraft
reaches the apohelion of the transfer orbit. An appropriate chosen departure time
leads to a rendezvous opportunity where, upon application of the second impulse ∆V2

given in Eq. (6.6), the spacecraft and the arrival planet have not only the same circular
speed, Vc2 =

√
µs/R2, but are also in the same location.

6.3 Rendezvous of a Spacecraft with a Planet

Suppose now that it is desired to perform a orbital transfer of a spacecraft from an
orbit that is equivalent to the orbit of a departure planet to an orbit that is equivalent to
the orbit of an arrival planet. Such a transfer falls into the category of an interplanetary
Hohmann transfer as given in Section 6.2. The difference, however, between a standard
Hohmann transfer between two circular orbits and a Hohmann transfer that departs
from one planet and arrive at another planet lies in the fact the latter such transfer
must be timed such that the spacecraft leaves the orbit of the departure planet at
a time such that the arrival planet and the spacecraft are co-located at the time of
arrival. Furthermore, because upon arrival the spacecraft must be moving with the
same velocity as that of the arrival planet, it is necessary that the spacecraft and the
arrival planet achieve a rendezvous upon arrival. Thus, transferring a spacecraft from
an departure planet to an arrival planet requires that such a rendezvous opportunity
occur.

In order realize a rendezvous opportunity, consider the following configuration of
two planets, denoted planet 1 and planet 2, and a spacecraft. Because the planets
move in co-planar circular orbits, an arbitrary line of apsides can be used where this
line of apsides contains the perihelion and the apohelion of the transfer orbit. Using
this line of apsides, the true anomalies of the orbits of planet 1 and planet 2 are given,
respectively, as

ν1 = ν10 +n1t, (6.7)

ν2 = ν20 +n2t, (6.8)
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where

n1 = 2π
τ1
, (6.9)

n2 = 2π
τ2

(6.10)

are the mean motions of planet 1 and planet 2, respectively (where the mean motion is
defined as the angular velocity of the line that connects the Sun to each of the planets
and τ1 and τ2 are the orbital periods of planet 1 and planet 2, respectively) and ν10

and ν20 are the true anomalies of planet 1 and planet 2, respectively, at time t = 0.
Given that the orbits of each planet are assumed to be circular, the angles ν1 and ν2

can be arbitrarily measured from a common line of apsides relative to the Sun. Assume
that this common line of apsides is the one associated with the interplanetary elliptic
Hohmann transfer orbit. The phase angle between the two planets, denoted φ, is then
given as

φ = ν2 − ν1. (6.11)

Substituting the results of Eqs. (6.7) and (6.8) into Eq. (6.11) gives

φ = ν20 − ν10 + (n2 −n1)t = φ0 + (n2 −n1)t, (6.12)

where
φ0 = ν20 − ν10 (6.13)

is the phase angle at time t = 0. Consider now the following two possibilities: n1 > n2

and n1 < n2. First, for the case n1 > n2 we have

2π
τ1
>

2π
τ2

(6.14)

which implies that
τ1 < τ2. (6.15)

As a result, the orbital period of planet 1 is less than the orbital period of planet 2
which implies that orbit 1 is smaller than orbit 2. Next, for the case n1 < n2 we have

2π
τ1
>

2π
τ2

(6.16)

which implies that
τ1 > τ2. (6.17)

As a result, the orbital period of planet 1 is greater than the orbital period of planet 2
which implies that orbit 1 is larger than orbit 2.

Suppose now that we consider a time period τs where the phase angle φ either
increases or decreases by one full rotation, that is, φ either increases or decreases by
2π . The time period for a one period change in φ is called the synodic period between
the two planets. The synodic period is now computed for both cases n1 < n2 and
n1 > n2. First, for the case n1 < n2, planet 1 is moving with a larger speed than planet
2. As a result, the angle ν2 changes more slowly than the angle ν1 and the phase angle
given in Eq. (6.11) decreases as time increases. Consequently, the synodic period τs
will be the time for φ to have decreased by 2π . Then, from Eq. (6.12) we have

φ0 − 2π = φ0 + (n2 −n1)τs . (6.18)
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Solving Eq. (6.18) for the synodic period τs gives

τs = 2π
n1 −n2

, (n1 > n2). (6.19)

Next, for the case n1 < n2, planet 1 is moving with a smaller speed than planet 2. As a
result, the angle ν2 changes more rapidly than the angle ν1 and the phase angle given
in Eq. (6.11) increases as time increases. Consequently, the synodic period τs will be
the time for φ to have increased by 2π . Then, from Eq. (6.12) we have

φ0 + 2π = φ0 + (n2 −n1)τs . (6.20)

Solving Eq. (6.20) for the synodic period τs gives

τs = 2π
n2 −n1

, (n1 < n2). (6.21)

Combining the results of Eqs. (6.19) and (6.21), the synodic period is given more gen-
erally as

τs = 2π
|n2 −n1| . (6.22)

Finally, noting that n1 = 2π/τ1 and n2 = 2π/τ2, the synodic period can be written in
terms of the periods of the two planets as

τs = 2π∣∣∣2π
τ2
− 2π
τ1

∣∣∣ = τ2τ1

|τ2 − τ1| . (6.23)

Because the synodic period defines the time when the phase angle has changed by 2π ,
the synodic period defines the orbital period of the motion of planet 2 relative to the
motion of planet 1.

Consider now an interplanetary Hohmann transfer between planet 1 and planet 2.
The time required to complete the transfer is the half-period of the elliptic transfer
orbit, that is,

tT = π
√
a3

µs
. (6.24)

Noting that the semi-major axis of the transfer orbit is a = (R1 + R2)/2 (where R1 and
R2 are the distances from the Sun to planet 1 and planet 2, respectively), Eq. (6.24) can
be written as

tT = π
√
(R1 + R2)3

8µs
. (6.25)

Now, it is seen that the change in the true anomaly on the transfer orbit from planet 1
to planet 2 is π (that is, the spacecraft starts at the perihelion of the transfer orbit and
terminates at the apohelion of the transfer orbit). Furthermore, because the spacecraft
arrives at the apohelion of the transfer orbit and must meet planet 2 at this point,
upon arrival of the spacecraft at planet 2 it must be the case that planet 2 is located
on exactly the opposite side from where planet 1 was located when the spacecraft
departed planet 1. Thus, in the time tT give in Eq. (6.25) the location of planet 2 must
have changed by an angle n2tT , where n2 is the angular velocity of the direction from
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the Sun to planet 2. Moreover, denoting the initial phase angle between planet 1 and
planet 2 by φ0, it must be the case that

φ0 +n2tT = π (6.26)

Solving Eq. (6.26) for φ0 gives
φ0 = π −n2tT . (6.27)

The final phase angle (which is the phase angle when the spacecraft arrives at planet
2), denoted φf , is given from Eq. (6.12) as

φf = φ0 + (n2 −n1)tT = π −n2tT + (n2 −n1)tT = π −n1tT . (6.28)

Consider now a roundtrip of a spacecraft between planet 1 and planet 2 using an
interplanetary Hohmann transfer on both legs of the transfer. First, the spacecraft is
transferred from planet 1 to planet 2 using an interplanetary Hohmann transfer that
raises both apohelion and perihelion (in that order). Then, when possible, the space-
craft is returned to planet 1 from planet 2 using an interplanetary Hohmann transfer
that lowers both perihelion and apohelion (in that order). In order to accomplish both
the outbound and inbound transfers, it is necessary that the spacecraft rendezvous
with planet 2 on the outbound transfer while the spacecraft must rendezvous with
planet 1 on the inbound transfer. The outbound and inbound transfers are shown
in Figs. 6.1(a) and 6.1(b), respectively. Now because both the outbound and inbound
transfers are Hohmann transfers, the outbound transfer orbit (that is, the transfer
orbit from planet 1 to planet 2) must be the first half (that is, from perihelion to apo-
helion) of an elliptic transfer orbit corresponding to a Hohmann transfer while the
return transfer orbit (that is, the transfer orbit from planet 2 to planet 1) must be the
second half (that is, from apohelion to perihelion) of an elliptic transfer orbit corre-
sponding to a Hohmann transfer. Therefore, the duration of the segment on both the
outbound transfer orbit and the inbound transfer obit must be the same. Suppose that
the time taken to accomplish either the outbound or the inbound transfer is denoted
tT as given in Eq. (6.24). Because the durations of both the outbound and the inbound
transfers are the same, the change in true anomaly of planet 1 during the outbound
trip must be the same as the change in true anomaly of planet 1 during the return
trip. Consequently, the phase angle at the start of the return transfer from planet 2 to
planet 1 must be exactly opposite the phase angle at the end of the outbound transfer
from planet 1 to planet 2, that is,

φ′0 = −φf , (6.29)

where φ′0 is the phase angle at the start of the return transfer from planet 2 to planet
1 and φf is obtained from Eq. (6.28). Suppose now that the time is reset to zero upon
the arrival of the spacecraft at planet 2. Then, because φ = φf upon arrival at planet 2
on the outbound transfer, the phase angle measured from the time of arrival at planet
2 is obtained from Eq. (6.12) as

φ′ = φf + (n2 −n1)t. (6.30)

Suppose now that the quantity tw denotes the time required to wait before a return
transfer can be started. Noting that the phase angle at the start of the return transfer,
that is at time tw , must be φ′(tw) = −φf , the wait time tw is obtained from Eq. (6.30)
as

φ′(tw) = −φf = φf + (n2 −n1)tw . (6.31)
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Solving Eq. (6.31) for tw gives

tw = −
2φf
n2 −n1

, (6.32)

where it is noted again that φf is as obtained in Eq. (6.28). It can be seen that the
result of Eq. (6.32) could be either positive or negative. If tw is negative, then the
opportunity to return from planet 2 to planet 1 occurred in the past. Thus, the next
opportunity to accomplish a return transfer from planet 2 to planet 1 will occur every
τs time units (that is, every synodic period). Recall for the case n1 > n2 that the phase
angle decreases. Therefore, using the results of Eqs. (6.19) and (6.32), the wait times
are given as

tw = −
2φf
n2 −n1

+ kτs = −
2φf
n2 −n1

+ k 2π
n1 −n2

= −2φf + 2πk
n2 −n1

. (6.33)

Next, recall for the case n1 < n2 that the phase angle increases. Therefore, using the
results of and (6.21) and (6.32), the wait times are given as

tw = −
2φf
n2 −n1

+ kτs = −
2φf
n2 −n1

+ k 2π
n2 −n1

= −2φf − 2πk
n2 −n1

. (6.34)

Combining the results of Eqs. (6.33) and (6.34), the possible wait times to accomplish
a return transfer from planet 2 to planet 1 are given as

tw =


−2φf + 2πk
n2 −n1

, n1 > n2,

−2φf − 2πk
n2 −n1

, n1 < n2.
k = 1,2, . . . (6.35)
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(a) Outbound Hohmann transfer from planet 1 to planet
2.

(b) Inbound Hohmann transfer from planet 2 to planet 1.

Figure 6.1 Schematic of outbound and inbound interplanetary Hohmann transfers
between two planets.
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6.4 Sphere of Influence

Suppose now that we consider the effect of the gravitational field of both the Sun
and a planet on a spacecraft. The Sun is the body in the solar system that has the
greatest gravitational influence. In fact, the Sun has a mass that is over three orders of
magnitude larger than the most massive planet in the solar system (that planet being
Jupiter) and is over five orders of magnitude more massive than the Earth. While the
Sun is so massive and exerts a large gravitational force on any body, when a spacecraft
is in the vicinity of a planet (that is, the spacecraft is within some distance of the
planet) the gravitational force exerted by the planet on the spacecraft is larger than the
gravitational force exerted by the Sun. The goal of this section is to provide a derivation
of the classical sphere of influence that provides an approximation of the distance
within which a planet has a larger gravitational effect on a spacecraft in comparison
to that of the Sun. In the context of interplanetary trajectories, the sphere of influence
provides a distance between the spacecraft and a planet where a transition takes place
between the Sun being considered as the centrally attracting body and the planet being
considered as the centrally attracting body.

In order to determine the sphere of influence of a planet, consider the three-body
system of the Sun, denoted s, a planet, denoted p, and the spacecraft, denoted v , as
shown in Fig. 6.2. The mass of the Sun, planet, and spacecraft are given as ms , mp,

Figure 6.2 Three-body system consisting of the Sun, a planet, and a spacecraft.

andmv , respectively. In addition, the position of the spacecraft relative to the Sun, the
planet relative to the Sun, and the spacecraft relative to the planet are denoted, respec-
tively, as Rv , R, and r. Furthermore, denote the magnitudes of these three positions
as

‖Rv‖ = Rv , (6.36)

‖R‖ = R, (6.37)

‖r‖ = r . (6.38)

The position of the spacecraft relative to the Sun is then given as

Rv = R+ r. (6.39)

Assume now that the only forces acting on any one of the three bodies are the gravi-
tational forces of attraction of the other body. Using the terminology of Chapter 1 as
given in Eq. (1.2) on page 9 (where FAB was denoted the force exerted by object B on ob-
ject A), the forces of gravitational attraction exerted by the Sun on the spacecraft, the
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Sun on the planet, and the planet on the spacecraft are given from Newton’s universal
law of gravitation, respectively, as

Fvs = −Gmvms

R3
v

Rv , (6.40)

Fps = −Gmpms

R3
R, (6.41)

Fvp = −Gmvmp

r 3
r. (6.42)

Suppose now that the Sun is considered the inertial reference frame, denoted I , for the
three-body system under consideration. Then the inertial acceleration of the spacecraft
and the planet are given, respectively, as Iav and Iap. Applying Newton’s second law
to the spacecraft gives

Fv = Fvs + Fvp = −Gmvms

R3
v

Rv −
Gmvmp

r 3
r =mv

Iav . (6.43)

The inertial acceleration of the spacecraft is then given as

Iav = −Gms

R3
v

Rv −
Gmp

r 3
r = As + Pp, (6.44)

where the quantities As and Pp are defined as

As = −Gms

R3
v

Rv , (6.45)

Pp = −Gmp

r 3
r, (6.46)

It is noted that As and Pp represent the gravitational accelerations due to the Sun and
the planet on the vehicle, where As is considered the primary gravitational acceleration
while Pp is considered the secondary acceleration or, equivalently, the perturbation
from central-body Sun gravitation on the spacecraft. The magnitudes of As and Pp are
then given as

As = ‖As‖ = Gms

R2
v
, (6.47)

Pp = ‖Pp‖ =
Gmp

r 2
. (6.48)

Noting that Rv ≈ R (that is, the distance from the Sun to the spacecraft is approxi-
mately the same as the distance of the Sun to the planet), the quantity As in Eq. (6.47)
can be approximated as

As = Gms

R2
. (6.49)

Next, applying Newton’s second law to the planet gives

Fp = Fps + Fpv = −
Gmpms

R3
R+ Gmpmv

r 3
r =mp

Iap. (6.50)

where from Newton’s third law it is noted that Fpv = −Fvp. The inertial acceleration
of the spacecraft is then given as

Iap = −Gms

R3
R+ Gmv

r 3
r = Gmv

r 3
r− Gms

R3
R. (6.51)
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The inertial acceleration of the spacecraft relative to the planet is then given as

Iav − Iap = Iav/p = −Gms

R3
v

Rv −
Gmp

r 3
r−

[
Gmv

r 3
r− Gms

R3
R
]

= −G(mp +mv)
r 3

r− Gms

R3
v

Rv + Gms

R3
R

= −Gmp

r 3
r

(
1+ mv

mp

)
− Gms

R3
v

[
Rv −

(
Rv
R

)3

R

]
.

(6.52)

Substituting Rv from Eq. (6.39) into Eq. (6.52) gives

Iav/p = −
Gmp

r 3
r

(
1+ mv

mp

)
− Gms

R3
v

[
R+ r−

(
Rv
R

)3

R

]

= −Gmp

r 3
r

(
1+ mv

mp

)
− Gms

R3
v

{
r+

[
1−

(
Rv
R

)3
]

R

}
.

(6.53)

Observe now that mv � mp which implies that mv/mp ≈ 0 from which the inertial
acceleration of the spacecraft relative to the planet in Eq. (6.53) is approximated as

Iav/p = −
Gmp

r 3
r− Gms

R3
v

{
r+

[
1−

(
Rv
R

)3
]

R

}
. (6.54)

Furthermore, because the distance from the Sun to the spacecraft is approximately the
same as the distance from the Sun to the planet, that is, Rv ≈ R, the term 1−(Rv/R)3 ≈
0. The inertial acceleration of the spacecraft relative to the planet in Eq. (6.54) is then
approximated further as

Iav/p = −
Gmp

r 3
r− Gms

R3
r = ap + ps , (6.55)

where the quantities ap and ps are defined as

ap = −Gmp

r 3
r, (6.56)

ps = −Gms

R3
r. (6.57)

It is noted that, unlike Eq. (6.44), where the Sun was considered the primary body and
the planet was considered the perturbing body, in Eq. (6.55) the planet is considered
the primary body and the Sun is considered the perturbing body. The magnitudes of
ap and ps are then given as

ap = ‖ap‖ = Gmp

r 2
, (6.58)

ps = ‖ps‖ = Gms

R3
r . (6.59)

Now, for motion where the Sun is considered the primary body and the planet is con-
sidered the secondary body, the ratio As/Pp is considered the deviation from two-body
motion relative to the Sun. Similarly, for motion where the planet is considered the pri-
mary body and the Sun is considered the secondary body, the ratio ap/ps is considered
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the deviation from two-body motion relative to the planet. Then, the planet will have
less influence on the motion of the spacecraft if

ps
ap
<
Pp
As
. (6.60)

Substituting the results of Eqs. (6.48), (6.49), (6.58), (6.59) into Eq. (6.60) gives

Gmsr/R3

Gmp/r 2
<
Gmp/r 2

Gms/R2
(6.61)

which can be re-written as
ms

mp

(
r
R

)3

<
mp

ms

(
R
r

)2

. (6.62)

Rearranging Eq. (6.62) gives (
r
R

)5

<
(mp

ms

)2

. (6.63)

The sphere of influence of a planet, denoted rSOI, is then defined as the condition
where the two sides of Eq. (6.63) are equal, that is, the sphere of influence is given as(

rSOI

R

)5

=
(mp

ms

)2

(6.64)

which gives

rSOI = R
(mp

ms

)2/5
. (6.65)

6.5 Patched-Conic Approximation

In Chapters 1–5 the focus was on the motion of a spacecraft under the influence of a
single central body. In the case of interplanetary orbital transfer, however, the space-
craft moves under the influence of more than one body. A starting point for designing
interplanetary orbit transfers is to employ a technique where only one central body
is considered during different segments or phases of the transfer and then to piece
together an interplanetary transfer from these pieces. Such an approximation is called
a patched conic approximation because it utilizes the results of Chapters 1–5 where a
spacecraft is under the influence of a single central body moves in the path defined
by a conic section (that is, an ellipse, parabola, or hyperbola). The patched-conic ap-
proximation consists of three distinct phases: (1) leaving sphere of influence of the
departure planet; (2) an elliptic heliocentric transfer orbit that starts at the perihelion
of the transfer orbit and terminates at the apohelion of the transfer orbit; and (3) en-
tering the sphere of influence of the arrival planet. The first and third phases have a
somewhat opposite nature in that the planetary departure changes the orbit relative
to the departure planet from elliptic to hyperbolic while planetary arrival changes the
orbit relative to the arrival planet from hyperbolic to elliptic. In the next three sections
these various phases of flight are considered along with conditions that define the
transitions between the phases. A fundamental assumption made in the patched-conic
approximation considered here is that the transfer occurs in the ecliptic plane, that is,
the Sun, the departure planet, the arrival planet, and the spacecraft are all moving in
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the same plane. Finally, in this section only a transfer from an inner planet to an outer
planet is considered because the geometry for a transfer from an outer planet to an
inner planet is exactly opposite the geometry of a transfer from an inner planet to an
outer planet.

6.5.1 Planetary Departure

Suppose that we consider the transfer from a relative inner planet to a relative outer
planet. The starting planet is called the departure planet while the arrival planet is
called the arrival planet. A departure from an inner planet to an outer planet is shown
schematically in Fig. 6.3(a). Now consider a spacecraft in a circular orbit, denoted
a parking orbit, relative to the departure planet. In order for the spacecraft to be
transferred to a arrival planet it is necessary for the spacecraft to be placed onto a
heliocentric transfer orbit. Consequently, it is necessary that the spacecraft escape the
gravitational field of the departure planet which requires that the spacecraft be placed
onto a hyperbolic orbit relative to the departure planet. Let Iv∞ be the hyperbolic
excess inertial velocity and let v∞ = ‖Iv∞‖ be the corresponding hyperbolic excess
speed. In other words, v∞ is the speed in excess of parabolic speed as the vehicle
approaches the asymptote defined by the hyperbola (see Fig. 1.8 on page 27 of Chapter
1). Next, let IVc1 be the inertial velocity of the departure planet (relative to the Sun). It
is seen from Fig. 6.3(a) that in order for the spacecraft to be placed onto a heliocentric
Hohmann transfer from the departure planet to the arrival planet, it is necessary that
Iv∞ be parallel to and in the same direction as IVc1. It is also seen from Fig. 6.3(a)
that the spacecraft must leave the departure planet from the anterior of the sphere
of influence. Next, the hyperbolic excess v∞ must be chosen such that the perihelion
and apohelion are R1 and R2, respectively. In other words, the value of v∞ must
correspond to the speed required to place the spacecraft onto an elliptic heliocentric
transfer transfer orbit whose perihelion is the radius of the circular heliocentric orbit
of the departure planet and whose apohelion is the radius of the circular heliocentric
orbit of the arrival planet. Therefore, the departure excess hyperbolic speed along the
departure hyperbolic orbit, v∞, is given as

v∞ =
√

2µs
R1
− 2µs
R1 + R2

−
√
µs
R1
=
√
µs
R1

(√
2R2

R1 + R2
− 1

)
, (6.66)

where µs is the gravitational parameter of the Sun. The periapsis radius from the
center of the departure planet is then obtained from Eqs. (1.139) and (1.140) on page
26 and Eq. (1.43) on page 13 of Chapter 1 as

rp = a(1− e) = p
1− e2

(1− e) = p
1+ e =

h2/µ1

1+ e , (6.67)

where µ1 is the gravitational parameter of the orginating planet and the quantities h,
p and e are measured relative to the planet. Equation (6.67) can be solved for h2 to
give

h2 = a(1− e)(1+ e)µ1 = a(1− e2)µ1. (6.68)

Next, from Eq. (1.66), the specific mechanical energy on the departure orbit is given as

E =
Iv · Iv

2
− µ
r
= − µ1

2a
. (6.69)
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Noting as the spacecraft approaches the asymptote on the outbound hyperbolic the
distance from the departure planet approaches ∞ which implies that r∞ = ∞. Evaluat-
ing Eq. (6.69) at r = r∞ then gives

E = v
2∞

2
− µ
r∞
= v

2∞
2
= − µ1

2a
. (6.70)

Solving Eq. (6.70) for v2∞ gives

v2
∞ = −

µ1

a
. (6.71)

It is noted in Eq. (6.71) that a < 0 on a hyperbolic which implies that v2∞ > 0. Rear-
ranging Eq. (6.71), the semi-major axis of the hyperbolic orbit relative to the departure
planet is given as

a = − µ1

v2∞
. (6.72)

Substituting the value for a in Eq. (6.72) into Eq. (6.68) gives

h2 = − µ1

v2∞
(1− e2)µ1 = −µ

2
1(1− e2)
v2∞

= µ
2
1(e2 − 1)
v2∞

(6.73)

It is note that, because the orbit relative to the departure planet is hyperbolic, the value
h2 in Eq. (6.73) must be greater than zero. Substituting the expression for h2 given in
Eq. (6.73) into Eq. (6.67) gives

rp =
µ2

1(e2−1)/µ1

v2∞
1+ e = µ1(e− 1)

v2∞
. (6.74)

Solving Eq. (6.74) for the eccentricity gives

e = 1+ rpv
2∞

µ1
. (6.75)

Furthermore, substituting the value of e given in Eq. (6.75) into Eq. (6.73) gives

h2 = µ
2
1

v2∞

(1+ rpv
2∞

µ1

)2

− 1

 = µ2
1

v2∞

1+ 2rpv2∞
µ1

+
(
rpv2∞
µ1

)2

− 1


= µ

2
1

v2∞

2rpv2∞
µ1

+
(
rpv2∞
µ1

)2
 = µ2

1

v2∞

rpv2∞
µ1

(
2+ rpv

2∞
µ1

)

= µ1rp

(
2+ rpv

2∞
µ1

)
= µ1rp

rp
µ1

(
v2
∞ +

2µ1

rp

)
= r 2

p

(
v2
∞ +

2µ1

rp

)
(6.76)

The magnitude of the specific angular momentum along the hyperbolic orbit relative
to the departure planet is then obtained from Eq. (6.76) as

h = rp
√
v2∞ +

2µ1

rp
. (6.77)

Now it is noted that at periapsis relative to the departure planet the position of the
spacecraft and the inertial velocity of the spacecraft are othogonal to one another
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(that is, r·Iv is zero at periapsis of the departure planet), the magnitude of the specific
angular momentum at periapsis of the departure planet is given as

h = rpvp. (6.78)

Equation (6.78) implies that

vp = h
rp
=
√
v2∞ +

2µ1

rp
. (6.79)

The magnitude of the escape impulse is then obtained as follows. Recall that the
spacecraft starts in a circular parking orbit of radius rp relative to the departure planet.
Therefore, the speed of the spacecraft relative to the departure planet the instant
before the escape impulse is applied is given as

vc1 =
√
µ1

rp
. (6.80)

The escape impulse is then given as the difference between vp of Eq. (6.79) and Eq. (6.80),
that is,

∆vescape = vp − vc1 =
√
v2∞ +

2µ1

rp
−
√
µ1

rp
= vc1

√2+
(
v∞
vc1

)2

− 1

 . (6.81)

Finally, the angle β that defines the direction of the departure asymptote relative to
the line of apsides of the departure hyperbola and also defined the location on the
departure hyperbola (where ∆vescape must be applied) is given from Eq. (1.135) on
page 26 of Chapter 1 as

β = cos−1
(

1
e

)
. (6.82)
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(a) Departure from inner planet to outer planet.

(b) Departure from outer planet to inner planet.

Figure 6.3 Departure of a spacecraft from an inner planet to a outer planet and a
relative outer planet to a relative inner planet.
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6.5.2 Planetary Arrival

Continuing with an interplanetary transfer from a relative inner planet to a relative
outer planet, suppose now that the arrival of the spacecraft at the relative outer planet
is considered. The terminating planet is called the arrival planet. An arrival at a relative
outer planet is shown schematically in Fig. 6.4(a). In order to place the spacecraft in
a terminal orbit relative to the arrival planet it is necessary that the spacecraft be
captured by the gravitational field of the arrival planet. This capture requires arrive at
the sphere of influence of the arrival planet on a hyperbolic trajectory relative to the
arrival planet and that an impulse be applied so that the spacecraft can be captured
by the arrival planet. Similar to planetary departure, let Iv∞ be the hyperbolic excess
inertial velocity and let v∞ = ‖Iv∞‖ be the corresponding hyperbolic excess speed. In
other words, v∞ is the speed in excess of parabolic speed as the vehicle approaches
the arrival planet along the asymptote defined by the hyperbola (see Fig. 1.8 on page
27 of Chapter 1). Next, let IVc2 be the inertial velocity of the arrival planet (relative to
the Sun). It is seen from Fig. 6.4(a) that Iv∞ must be parallel to and in the opposite
direction as IVc2. In other words, in order for the spacecraft to arrive at the outer
(arrival) planet it is necessary that the planet be overtaking the spacecraft, thus making
it such that the spacecraft is moving toward the planet upon arrival. It is also seen from
Fig. 6.4(a) that the spacecraft must arrive at the arrival planet from the anterior of the
sphere of influence. Therefore, the arrival excess hyperbolic speed along the arrival
hyperbolic orbit, v∞, is given as

v∞ =
√
µs
R2
−
√

2µs
R2
− 2µs
R1 + R2

=
√
µs
R2

(
1−

√
2R1

R1 + R2

)
, (6.83)

where µs is the gravitational parameter of the Sun. The periapsis radius from the
center of the arrival planet is then obtained from Eqs. (1.139) and (1.140) on page 26
and Eq. (1.43) on page 13 of Chapter 1 as

rp = a(1− e) = p
1− e2

(1− e) = p
1+ e =

h2/µ2

1+ e , (6.84)

where µ2 is the gravitational parameter of the arrival planet and the quantities h, p
and e are measured relative to the arrival planet. Solving Eq. (6.84) for the magnitude
of the specific angular momentum relative to the planet gives

h = µ2
√
e2 − 1
v∞

, (6.85)

where it is noted that e > 1 because the spacecraft is on an incoming hyperbolic
trajectory relative to the arrival planet. Substituting the expression for h as given in
Eq. (6.85) into the expression for the periapsis radius in Eq. (6.84), the eccentricity of
the arrival hyperbola is obtained as

e = 1+ rpv
2∞

µ2
. (6.86)

Furtheremore, substituting the value of e given in Eq. (6.86) into Eq. (6.85), the mag-
nitude of the specific angular momentum along the arrival hyperbolic orbit relative to
the departure planet is given a

h = rp
√
v2∞ +

2µ2

rp
. (6.87)
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Now it is noted that at periapsis relative to the arrival planet the position of the space-
craft and the inertial velocity of the spacecraft are othogonal to one another (that is,
r · Iv is zero at periapsis of the arrival planet), the magnitude of the specific angular
momentum at periapsis of the arrival planet is given as

h = rpvp. (6.88)

Equation (6.88) implies that

vp = h
rp
=
√
v2∞ +

2µ2

rp
. (6.89)

The magnitude of the capture impulse is then obtained as follows. First, the speed of
the spacecraft in the terminal circular orbit relative to the arrival planet is given as

vc2 =
√
µ2

rp
. (6.90)

The capture impulse is then given as the difference between vp of Eq. (6.79) and
Eq. (6.80), that is,

∆vcapture = vp − vc2 =
√
v2∞ +

2µ2

rp
−
√
µ2

rp
= vc2

√2+
(
v∞
vc2

)2

− 1

 (6.91)

Now, the angle β that defines the direction of the arrival asymptote relative to the line
of apsides of the arrival hyperbola and also defines the location of the periapsis on the
arrival hyperbola (where ∆vcapture must be applied) is given from Eq. (1.135) on page
26 of Chapter 1 as

β = cos−1
(

1
e

)
. (6.92)

Finally, suppose that the capture impulse ∆vcapture is not applied as the vehicle moves
through the sphere of influence of the arrival planet. Then, as shown in Fig. 6.4(a),
instead of being captured by the arrival planet, the spacecraft will exit the sphere of
influence with a speed v∞ but in the direction defined by the outbound asymptote.
In other words, if no capture impulse is applied, the spacecraft will undergo a plane-
tary flyby of what would have been the arrival planet. If the geometry is as shown in
Fig. 6.4(a), the spacecraft will exit the sphere of influence of the arrival planet in such a
manner that it will be sent further from the Sun than it was upon entering the sphere
of influence of the arrival planet.
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(a) Arrival at an outer planet from an inner planet.

(b) Arrival at an inner planet from an outer planet.

Figure 6.4 Arrival of a spacecraft at an inner planet from a outer planet and and at
an outer planet from an inner planet.
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6.5.3 Planetary Flyby (Gravity Assist) Trajectories

Suppose now that the case of a planetary flyby is considered. Similar to planetary
arrival, a planetary flyby is when a spacecraft enters the sphere of influence of a planet.
Unlike the case of planetary arrival, however, when the spacecraft performs a planetary
flyby the orbit of the spacecraft remains hypebolic and eventually leaves the sphere of
influence of the planet. A planetary flyby is shown in Figs. 6.4(a) and 6.4(b) for the
cases where a spacecraft approaches an outer planet from an inner planet (Fig. 6.4(a))
and approaches an inner planet from an outer planet (Fig. 6.4(b)). In either case, the
velocity of the spacecraft relative to the planet on the inboud and outbound hyperbolic
asymptotes are Iv−∞ and Iv+∞, respectively, as shown in Figs. 6.4(a) and 6.4(b). Next, the
turn angle, denoted δ, of a planetary flyby is shown in Fig. 6.5, where the turn angle is
the change in direction from Iv−∞ to Iv+∞ (where it is noted again that ‖Iv−∞‖ = ‖Iv+∞‖ =
v∞). Denoting IVp as the velocity of the planet relative to the Sun, the velocity of the
spacecraft relative to the Sun on the inbound hyperbolic asymptote is given as

Ivs = IVp + Iv−∞. (6.93)

Similarly, the velocity of the spacecraft relative to the Sun on the outbound hyperbolic
asymptote is given as

Ivs = IVp + Iv+∞. (6.94)

Assume now that the time taken for the spacecraft to pass through the sphere of in-
fluence of the planet is small in comparison to the total transfer time. Then as an
approximation it can be taken that the change in velocity Iv+∞ − Iv−∞ occurs instanta-
neously (such that the position of the planet does not change) and the impulse due to
the planetary flyby is given as

∆Ivfb = (IVp + Iv+∞)− (IVp + Iv−∞) = Iv+∞ − Iv−∞. (6.95)

Then, given that ‖Iv−∞‖ = ‖Iv+∞‖ = v∞, the magnitude of the impulse given in Eq. (6.95)
is given from the law of cosines as(

∆vfb
)2 = ‖∆Iv‖2 = 2v2

∞ − 2v2
∞ cosδ = 2v2

∞(1− cosδ). (6.96)

Then, using the fact that cos(2α) = 1− 2 sin2α,

1− cosδ = 2 sin2
(
δ
2

)
from which Eq. (6.96) simplifies to

∆vfb = 2v∞ sin
(
δ
2

)
. (6.97)

Recall now that the periapsis radius of the hyperbola is denoted rp. Suppose further
that the radius and gravitational parameter of the planet are denoted, respectively, as
R and µ. Then Eq. (6.97) can be written in terms rp, R, and µ as follows. First, the
eccentricity in Eq. (6.86) can be written as

e = 1+ rpv
2∞

µ
= 1+ rp

R
R
µ
v2
∞ = 1+ rp

R
v2∞
v2
s
, (6.98)
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where

vs =
√
µ
R

(6.99)

is the speed of a spacecraft in a circular orbit of radius R. Now, from the geometry of
a hyperbola as given in Fig. 1.8 on page 27 of Chapter 1, the turn angle δ is given in
terms of the asymptote angle β as

δ+ 2β = π (6.100)

which implies that
δ = π − 2β. (6.101)

The turn half-angle, δ/2, is then given as

δ
2
= π

2
− β. (6.102)

Taking the sine on both sides of Eq. (6.102) gives

sin
(
δ
2

)
= sin

(
π
2
− β

)
= sin

(
π
2

)
cosβ+ cos

(
π
2

)
sinβ = cosβ. (6.103)

Then, using the result of Eq. (6.92),

sin
(
δ
2

)
= 1
e
. (6.104)

Substituting the result of Eq. (6.98) into Eq. (6.104) gives

sin
(
δ
2

)
= 1

1+ rp
R
v2∞
v2
s

(6.105)

The planetary flyby impulse of Eq. (6.97) is then given as

∆vfb = 2v∞

1+ rp
R
v2∞
v2
s

(6.106)

Normalizing the flyby impulse by the circular speed vs given in Eq. (6.99) gives

∆vfb
vs

= 2v∞/vs

1+ rp
R
v2∞
v2
s

(6.107)
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Figure 6.5 Schematic of a planetary flyby (gravity assist) trajectory.

6.5.4 Planetary Flyby Following an Interplanetary Hohmann Transfer

Consider a spacecraft that has been transferred from a departure planet to an ar-
rival planet via an interplanetary Hohmann transfer. Furthermore, suppose that, sub-
sequent to the interplanetary Hohmann transfer, the spacecraft will perform a flyby
(gravity assist) of the arrival planet, where the fly will be used to send the spacecraft
either further from or closer to the Sun. In addition, assume that the planetary flyby
will be performed on the dark side of the planet (that is, the flyby will occur on the side
of the planet opposite that of the Sun). Because an interplanetary Hohmann transfer
has been used to leave the departure planet, the heliocentric inertial velocity of the
spacecraft upon entrace to the sphere of influence of the arrival planet, Iv−, is parallel
to the heliocentric inertial velocity, IVp, of the planet. The planetary flyby can occur
at an outer or an inner arrival planet. Because the conditions for the planetary flyby of
an outer or an inner planet are different, each of these two cases are now considered
separately.

Figure 6.6(a) provides a schematic of a planetary flyby that follows an interplane-
tary Hohmann transfer from an inner planet to an outer planet. Moreover, Fig. 6.6(b)
provides a schematic of the velocity of the spacecraft relative to the Sun before and af-
ter the flyby along with the velocity of the planet. Because Iv−v and IVp are parallel, the
pre-flyby heliocentric flight path angle is zero while the post-flyby heliocentric flight
path angle is negative. Also, because the transfer is to an outer planet, the heliocentric
speed of the spacecraft is smaller than the heliocentric speed of the planet prior to the
flyby, that is,

v−v/s = ‖Iv−‖ < Vp. (6.108)

Consequently, as shown in Fig. 6.6(b), the pre-flyby hyperbolic excess velocity relative
to the planet, ‖Iv−∞‖, lies in the direction opposite the heliocentric velocity of the
planet. The hyperbolic excess speed upon entrance to the sphere of influence of the
outer planet is then given as

v−∞ = Vp − v−. (6.109)
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Using Fig. 6.6(b) together with the fact that v∞ = v+∞ = v−∞ = ‖Iv−∞‖ and denoting
the post-flyby heliocentric inertial speed of the spacecraft by v+, the turn angle of the
flyby can then be computed from the law of cosines as(

v+
)2 = v2

∞ + V2
p − 2Vpv∞ cosδ, (6.110)

where v+ is the heliocentric speed of the spacecraft following the flyby.

(a) Flyby of an outer planet following an interplanetary
Hohmann transfer.

(b) Turn angle of an outer planet following an interplanetary
Hohmann transfer.

Figure 6.6 Schematic of an outer planet flyby and associated turn angle of an inner
planet flyby following an interplanetary Hohmann transfer.

Next, Fig. 6.7(a) provides a schematic of a planetary flyby that follows an interplan-
etary Hohmann transfer from an outer planet to an inner planet. Moreover, Fig. 6.7(b)
provides a schematic of the velocity of the spacecraft relative to the Sun before and af-
ter the flyby along with the velocity of the planet. Because Iv− and IVp are parallel, the
pre-flyby heliocentric flight path angle is zero while the post-flyby heliocentric flight
path angle is negative. Also, because the transfer is to an inner planet, the pre-flyby
heliocentric inertial speed of the spacecraft, v− = ‖Iv−‖, is larger than the heliocen-
tric speed of the planet prior to the flyby, that is, v− > Vp. Consequently, as shown

in Fig. 6.7(b), the pre-flyby hyperbolic excess velocity relative to the planet, ‖Iv−∞‖, lies
in the same direction as the heliocentric velocity of the planet. The hyperbolic excess
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speed upon entrance to the sphere of influence of the outer planet is then given as

v−∞ = v− − Vp. (6.111)

Using Fig. 6.7(b) together with the fact that v∞ = v+∞ = v−∞ = ‖Iv−∞‖ and denoting
the post-flyby heliocentric inertial speed of the spacecraft by v+, the turn angle of the
flyby can then be computed from the law of cosines as(

v+
)2 = v2

∞ + V2
p − 2Vpv∞ cos(π − δ) = v2

∞ + V2
p + 2Vpv∞ cosδ, (6.112)

where the identity cos(π − δ) = cosπ cosδ + sinπ sinδ = − cosδ has been used in
Eq. (6.112).

(a) Flyby from an outer planet to inner planet.

(b) Turn angle of a flyby from an outer planet to inner planet.

Figure 6.7 Schematic of an inner planet flyby and associated turn angle of an inner
planet flyby following an interplanetary Hohmann transfer.

The results developed in this section can now be used to compute, the turn angle,
δ, the periapsis radius, rp, and the eccentricity, e, of the hyperbolic flyby orbit under
the assumption that the post-flyby heliocentric inertial speed, v+, is specified. First,
as given earlier, let R1 and R2 be the distances from the Sun to the departure and
arrival planets, respectively. Then the heliocentric inertial speed of the spacecraft
upon planetary arrival is given as

v− =
√

2µs
R2
− 2µs
R1 + R2

, (6.113)
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where it is noted that (R1 + R2)/2 is the semi-major axis of the heliocentric elliptic
interplanetary Hohmann transfer orbit. Next, the heliocentric inertial speed of the
planet is given as

Vp =
√
µs
R2

(6.114)

which implies that the hyperbolic excess speed is

v∞ =
∣∣∣Vp − v−∣∣∣ , (6.115)

where the absolute value is used v∞ must be nonnegative (that is, the speed is a non-
negative quantity). The turn angle is then computed by solving either Eq. (6.110) (in
the case of an outer planet flyby) or (6.112) (in the case of an inner planet flyby) for δ.
Once the turn angle is computed, the eccentricity of the orbit is obtained by solving
Eq. (6.104) for e. Finally, using the value for e obtained from Eq. (6.104), the periapsis
radius is obtained by solving Eq. (6.86) for rp. Note that the post-flyby heliocentric
inertial speed v+ must be known because the objective of the flyby is to alter the he-
liocentric orbit of the spacecraft in such a manner that the spacecraft is either moving
closer or further from the Sun. Thus, as stated, in order to employ the aforementioned
procedure it is necessary that the post-flyby heliocentric inertial speed, v+, be known.
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Problems for Chapter 6

6–1 A spacecraft starts in a 350 km altitude orbit relative to the Earth. The objective
is to transfer the spacecraft to a circular orbit relative to Mars with an altitude of
350 km. Determine

(a) the impulse required to place the spacecraft onto the departure hyperbola that
enables the spacecraft to arrive at an apohelion that is the same distance from the
Sun as Mars.

(b) the angle β between the line of apsides of the departure hyperbola and the hyper-
bolic excess velocity, Iv∞.

(c) the impulse required to insert the spacecraft into the final orbit relative to Mars.

Assume in your answers that the gravitational parameters of Earth and the Sun are
given, respectively, as µe = 3.986× 105 km3·s−2 and µs = 1.327× 1011 km3·s−2 while
the distance from the Sun to Earth and the Sun to Mars are given, respectively, as
Res = 1.496× 108 km and Rms = 2.279× 108 km

6–2 A spacecraft starts in a 300 km altitude orbit relative to the Earth. The objective
is to transfer the spacecraft to a circular orbit relative to Venus with an altitude of
300 km. Determine

(a) the impulse required to place the spacecraft onto the departure hyperbola that
enables the spacecraft to arrive at a perihelion that is the same distance from the
Sun as Venus.

(b) the angle β between the line of apsides of the departure hyperbola and the hyper-
bolic excess velocity, Iv∞.

(c) the impulse required to insert the spacecraft into the final orbit relative to Venus.

Assume in your answers that the gravitational parameters of Earth and the Sun are
given, respectively, as µe = 3.986× 105 km3·s−2 and µs = 1.327× 1011 km3·s−2 while
the distance from the Sun to Earth and the Sun to Venus are given, respectively, as
Res = 1.496× 108 km and Rms = 1.082× 108 km

6–3 A spacecraft sends a rover to Mars from Earth. The rover will spend time collect-
ing samples on Mars before a spacecraft is launched from Mars to return the samples
collected by the rover back to Earth. Suppose that rover arrived at Mars on 1 January
2018 at 00:00 Greenwich Mean Time (henceforth referred to as the Epoch). Determine
the following information

(a) the mean motion of both Earth and Mars;

(b) the phase angle between Earth and Mars at the Epoch;

(c) the phase angle required at departure from Mars;

(d) the time available to the rover to collect samples before it is possible to perform a
Hohmann transfer to return the samples collected by the rover back to Earth;

(e) the impulses required to accomplish the orbit transfer;
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In solving this question, determine the precise locations of Earth and Mars on the day
the astronauts leave Mars given that they arrived at Mars at the Epoch given.

6–4 A spacecraft arrives at Venus from Earth using a Hohmann transfer from Earth.
The objective is to perform a planetary flyby of Venus so that the spacecraft can be
sent to Mercury (that is, the flyby will taken the spacecraft closer to the Sun). The flyby
will be designed so that the elliptic heliocentric orbit after the flyby has a heliocen-
tric orbital period that is 5/2 the orbital period of Mercury. Determine the following
information:

(a) the semi-major axis of the heliocentric orbit of the spacecraft after the flyby;

(b) the turn-angle requires to perform the planetary flyby;

(c) the altitude at the periapsis of Venus that corresponds to the turn-angle computed
in part (b);

(d) the eccentricity of the heliocentric orbit of the spacecraft after the flyby;

(e) whether or not it is possible for the spacecraft to cross the orbit of Mercury.
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