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Abstract. A local convergence rate is established for a Gauss orthogonal collocation method
applied to optimal control problems with control constraints. If the Hamiltonian possesses a strong
convexity property, then the theory yields convergence for problems whose optimal state and costate
possess two square integrable derivatives. The convergence theory is based on a stability result for
the sup-norm change in the solution of a variational inequality relative to a 2-norm perturbation,
and on a Sobolev space bound for the error in interpolation at the Gauss quadrature points and the
additional point −1. The tightness of the convergence theory is examined using a numerical example.
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1. Introduction. In earlier work [24, 25, 26], we analyze the convergence rate
for orthogonal collocation methods applied to unconstrained control problems. In this
analysis, it is assumed that the problem solution is smooth, in which case the theory
implies that the discrete approximations converge to the solution of the continuous
problem at potentially an exponential rate. But when control constraints are present,
the solution often possesses limited regularity. The convergence theory developed in
the earlier work for unconstrained problems required that the optimal state had at
least four derivatives, while for constrained problems, the optimal state may have only
two derivatives, at best [4, 7, 20, 28]. The earlier convergence theory was based on a
stability analysis for a linearization of the unconstrained control problem; the theory
showed that the sup-norm change in the solution was bounded relative to the sup-norm
perturbation in the linear system. Here we introduce a convex control constraint,
in which case the linearized problem is a variational inequality, or equivalently a
differential inclusion, not a linear system. We obtain a bound for the sup-norm
change in the solution relative to a 2-norm perturbation in the variational inequality.
By using the 2-norm for the perturbation rather than the sup-norm, we are able to
avoid both Lebesgue constants and the Markov bound [34] for the sup-norm of the
derivative of a polynomial relative to the sup-norm of the original polynomial. Using
best approximation results in Sobolev spaces [3, 13], we obtain convergence when the
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optimal state and costate have only two square integrable derivatives, which implies
that the theory is applicable to a class of control constrained problems for which the
optimal control is Lipschitz continuous.

The specific collocation scheme analyzed in this paper, presented in [2, 18], is
based on collocation at the Gauss quadrature points, or equivalently, at the roots
of a Legendre polynomial. Other sets of collocation points that have been studied
in the literature include the Lobatto quadrature points [11, 14, 19], the Chebyshev
quadrature points [12, 15], the Radau quadrature points [16, 17, 33, 36], and extrema
of Jacobi polynomials [39]. Kang [31, 32] obtains a convergence rate for the Lobatto
scheme applied to control systems in feedback linearizable normal form by inserting
bounds in the discrete problem for the states, the controls, and certain Legendre poly-
nomial expansion coefficients. In our approach, the discretized problem is obtained
by simply collocating at the Gauss quadrature points.

Our approximation to the control problem uses a global polynomial defined on the
problem domain. Earlier work, including [6, 8, 9, 10, 22, 30, 37], utilizes a piecewise
polynomial approximation, in which case convergence is achieved by letting the mesh
spacing approach zero, while keeping the polynomial degree fixed. For an orthogonal
collocation scheme based on global polynomials, convergence is achieved by letting the
degree of the polynomials tend to infinity. Our results show that even when control
constraints are present, and a solution possesses limited regularity, convergence can
still be achieved with global polynomials.

We consider control problems of the form

(1.1)
minimize C(x(1))
subject to ẋ(t) = f(x(t),u(t)), u(t) ∈ U , t ∈ Ω,

x(−1) = x0, (x,u) ∈ C1(Ω; Rn)× C0(Ω; Rm),

where Ω = [−1, 1], the control constraint set U ⊂ Rm is closed and convex with
nonempty interior, the state x(t) ∈ Rn, ẋ denotes the derivative of x with respect
to t, x0 is the initial condition which we assume is given, f : Rn × Rm → Rn, and
C : Rn → R, Cl(Ω; Rn) denotes the space of l times continuously differentiable
functions mapping Ω to Rn. It is assumed that f and C are at least continuous.

Let PN denote the space of polynomials of degree at most N , and let PnN denote
the n-fold Cartesian product PN × · · · × PN . We analyze the discretization of (1.1)
given by

(1.2)
minimize C(x(1))
subject to ẋ(τi) = f(x(τi),ui), ui ∈ U , 1 ≤ i ≤ N,

x(−1) = x0, x ∈ PnN .

The polynomials used to approximate the state should satisfy the dynamics exactly at
the collocation points τi, 1 ≤ i ≤ N . The parameter ui represents an approximation
to the control at time τi. The dimension of PN is N + 1, while there are N + 1
equations in (1.2) corresponding to the collocated dynamics at N points and the
initial condition. We collocate at the Gauss quadrature points, which are symmetric
about t = 0 and which satisfy

−1 < τ1 < τ2 < · · · < τN < +1.

The analysis also makes use of the two noncollocated points

τ0 = −1 and τN+1 = +1.
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For x ∈ C0(Ω; Rn), we use the sup-norm ‖ · ‖∞ given by

‖x‖∞ = sup{|x(t)| : t ∈ [0, 1]},

where | · | is the Euclidean norm. Given y ∈ Rn, the ball with center y and radius ρ
is denoted

Bρ(y) := {x ∈ Rn : |x− y| ≤ ρ}.

The following regularity assumption is assumed to hold throughout the paper.
Smoothness. The problem (1.1) has a local minimizer (x∗,u∗) in C1(Ω; Rn)×

C0(Ω; Rm). There exists an open set O ⊂ Rm+n and ρ > 0 such that

Bρ(x∗(t),u∗(t)) ⊂ O for all t ∈ Ω.

Moreover, the first two derivatives of f and C are Lipschitz continuous on the closure
of O and on Bρ(x∗(1)), respectively.

Let λ∗ denote the solution of the linear costate equation

(1.3) λ̇∗(t) = −∇xH(x∗(t),u∗(t),λ∗(t)), λ∗(1) = ∇C(x∗(1)),

where H is the Hamiltonian defined by H(x,u,λ) = λTf(x,u) and ∇ denotes gradi-
ent. From the first-order optimality conditions (Pontryagin’s minimum principle), it
follows that

(1.4) −∇uH(x∗(t),u∗(t),λ∗(t)) ∈ NU (u∗(t)) for all t ∈ Ω,

where NU is the normal cone. For any u ∈ U ,

NU (u) = {w ∈ Rm : wT(v − u) ≤ 0 for all v ∈ U},

while NU (u) = ∅ if u 6∈ U .
Since the collocation problem (1.2) is finite dimensional, the first-order optimality

conditions, or Karush–Kuhn–Tucker conditions, hold when a constraint qualification
[35] is satisfied. We show in Lemma 2.1 that the first-order optimality conditions are
equivalent to the existence of λ ∈ PnN such that

λ̇(τi) = −∇xH (x(τi),ui,λ(τi)) , 1 ≤ i ≤ N,(1.5)

λ(1) = ∇C(x(1)),(1.6)

NU (ui) 3 −∇uH (x(τi),ui,λ(τi)) , 1 ≤ i ≤ N.(1.7)

The following assumptions are utilized in the convergence analysis.
(A1) For some α > 0, the smallest eigenvalue of the Hessian matrices ∇2C(x∗(1))

and ∇2
(x,u)H(x∗(t),u∗(t),λ∗(t)) are greater than α, uniformly for t ∈ [0, 1].

(A2) For some β < 1/2, the Jacobian of the dynamics satisfies

‖∇xf(x∗(t),u∗(t))‖∞ ≤ β and ‖∇xf(x∗(t),u∗(t))T‖∞ ≤ β

for all t ∈ Ω, where ‖ · ‖∞ is the matrix sup-norm (largest absolute row sum),
and the Jacobian ∇xf is an n by n matrix whose ith row is (∇xfi)T.

The condition (A2) ensures (see Lemma 5.1) that in the discrete linearized prob-
lem, it is possible to solve for the discrete state in terms of the discrete control. As
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shown in [24], this property holds in an hp-collocation framework when the domain
Ω is partitioned into K mesh intervals with K large enough that

‖∇xf(x∗(t),u∗(t))‖∞/K ≤ β and ‖∇xf(x∗(t),u∗(t))T‖∞/K ≤ β

for all t ∈ Ω.
The coercivity assumption (A1) is not only a sufficient condition for the local

optimality of a feasible point (x∗,u∗) of (1.1), but it yields the stability of the discrete
linearized problem (see Lemma 6.2). One would hope that (A1) could be weakened to
only require coercivity relative to a subspace associated with the linearized dynamics
similar to what is done in [6]. To formulate this weakened condition, we introduce
the following 6 matrices:

A(t) = ∇xf(x∗(t),u∗(t)), B(t) = ∇uf(x∗(t),u∗(t)),

Q(t) = ∇xxH (x∗(t),u∗(t),λ∗(t)) , S(t) = ∇uxH (x∗(t),u∗(t),λ∗(t)) ,

R(t) = ∇uuH (x∗(t),u∗(t),λ∗(t)) , T = ∇2C(x∗(1)).

With this notation and with 〈·, ·〉 denoting the L2 inner product, the weaker version
of (A1) is that

x(1)TTx(1) + 〈x,Qx〉+ 〈u,Ru〉+ 2〈x,Su〉 ≥ α〈u,u〉,

whenever (x,u) satisfies ẋ = Ax + Bu with x(−1) = 0 and u = v − w for some v
and w ∈ L2 satisfying v(t) and w(t) ∈ U for almost every t ∈ [−1, 1]. For the Euler
integration scheme, we show in [6, Lem. 11] that this weaker condition implies an
analogous coercivity property for the discrete problem. The extension of this result
from the Euler scheme to orthogonal collocation schemes remains an open problem.

Let D be the N by N + 1 matrix defined by

(1.8) Dij = L̇j(τi), where Lj(τ) :=

N∏
l=0
l 6=j

τ − τl
τj − τl

, 1 ≤ i ≤ N and 0 ≤ j ≤ N.

The matrix D is a differentiation matrix in the sense that (Dp)i = ṗ(τi), 1 ≤ i ≤
N , whenever p ∈ PN is the polynomial that satisfies p(τj) = pj for 0 ≤ j ≤ N .
The submatrix D1:N , consisting of the trailing N columns of D, has the following
properties which are utilized in the analysis:

(P1) D1:N is invertible and ‖D−1
1:N‖∞ ≤ 2.

(P2) If W is the diagonal matrix containing the Gauss quadrature weights ωi,
1 ≤ i ≤ N , on the diagonal, then the rows of the matrix [W1/2D1:N ]−1 have
Euclidean norm bounded by

√
2.

The invertibility of D1:N is proved in [18, Prop. 1]. The bound for the inverse
appearing in (P1) is established in Appendix 1. (P2) has been checked numerically
for N up to 300 in [26]. Some intuition concerning the general validity of (P2) is
as follows: It is observed numerically that the last row of the matrix [W1/2D1:N ]−1

has the largest Euclidean norm among all the rows. Based on the formula for D−1
1:N

given in [18, sect. 4.1.2], the ith element in the last row approaches ωi as N tends to
infinity. Hence, the ith element in the last row of [W1/2D1:N ]−1 approaches

√
ωi as

N tends to infinity. Since the quadrature weights sum to 2, the Euclidean norm of
the last row of [W1/2D1:N ]−1 should be close to

√
2. Despite the strong numerical

evidence for (P2), a proof of (P2) for general N is still missing.
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The properties (P1) and (P2) are stated separately since they are used in different
ways in the analysis. However, (P2) implies (P1) by the Schwarz inequality. That is,
if r is a row from D−1

1:N , then we have

N∑
i=1

|ri| =
N∑
i=1

√
ωi (|ri|/

√
ωi) ≤

(
N∑
i=1

ωi

)1/2( N∑
i=1

r2
i /ωi

)1/2

≤ 2

since the quadrature weights sum to 2 and when (P2) holds, the Euclidean norm of a
row from [W1/2D1:N ]−1 is at most

√
2.

If xN ∈ PnN is a solution of (1.2) associated with the discrete controls ui, 1 ≤ i ≤
N , and if λN ∈ PnN satisfies (1.5)–(1.7), then we define

XN = [ xN (−1), xN (τ1), . . . , xN (τN ), xN (+1) ],
X∗ = [ x∗(−1), x∗(τ1), . . . , x∗(τN ), x∗(+1) ],
UN = [ u1, . . . , uN ],
U∗ = [ u∗(τ1), . . . , u∗(τN ) ],
ΛN = [λN (−1), λN (τ1), . . . , λN (τN ), λN (+1) ],
Λ∗ = [λ∗(−1), λ∗(τ1), . . . , λ∗(τN ), λ∗(+1) ].

The following convergence result relative to the vector ∞-norm (largest absolute el-
ement) is established. Here Hp(Ω; Rn) denotes the Sobolev space of functions with
square integrable derivatives through order p and norm denoted ‖ · ‖Hp(Ω; Rn).

Theorem 1.1. Suppose (x∗,u∗) is a local minimizer for the continuous problem
(1.1) with (x∗,λ∗) ∈ Hη(Ω;Rn) for some η ≥ 2. If both (A1)–(A2) and (P1)–(P2)
hold, then for N sufficiently large, the discrete problem (1.2) has a local minimizer
xN ∈ PnN and u ∈ RmN , and an associated multiplier λN ∈ PnN satisfying (1.5)–(1.7);
moreover, there exists a constant c independent of N and η such that

max
{
‖XN −X∗‖∞, ‖UN −U∗‖∞, ‖ΛN −Λ∗‖∞

}
≤
( c
N

)p−3/2 (
‖x∗‖Hp(Ω; Rn) + ‖λ∗‖Hp(Ω; Rn)

)
, p := min{η,N + 1}.

(1.9)

This result was established in [26] for an unconstrained control problem, but with
the exponent 3/2 replaced by 3 and with η ≥ 4. Hence, the analysis is extended
to control constrained problems and the exponent of N in the convergence estimate
is improved by 1.5. Since typical control constrained problems have regularity at
most η = 2 when (A1) holds, there is no guarantee of convergence with the previous
estimate.

The paper is organized as follows. In section 2 the discrete optimization problem
(1.2) is reformulated as a differential inclusion obtained from the first-order opti-
mality conditions, and a general approach to convergence analysis is presented. We
also establish the connection between the Karush–Kuhn–Tucker conditions and the
polynomial conditions (1.5)–(1.7). In section 3 we use results from [3] to bound the
derivative of the interpolation error in L2. Section 4 estimates how closely the solu-
tion to the continuous problem satisfies the first-order optimality conditions for the
discrete problem, while section 5 establishes the invertibility of the linearized dynam-
ics for the discrete problem. Section 6 proves a Lipschitz property for the linearized
optimality conditions, which yields a proof of Theorem 1.1. A numerical example
given in section 7 indicates the potential for further improvements to the convergence
rate exponent. Section 10 contains a result of Maday concerning the error in best H1

approximation relative to an L2 norm with a singular weight function.
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Notation. We let PN denote the space of polynomials of degree at most N , while
P0
N is the subspace consisting of polynomials in PN that vanish at t = −1 and t = 1.

The Gauss collocation points τi, 1 ≤ i ≤ N , are the roots of the Legendre polynomial
PN of degree N . The associated Gauss quadrature weights ωi, 1 ≤ i ≤ N , are given
by

(1.10) ωi =
2

(1− τ2
i )P ′N (τi)2

.

For any p ∈ P2N−1, we have [38, Thm. 3.6.24]

(1.11)

∫
Ω

p(t) dt =

N∑
i=1

ωip(τi).

Derivatives with respect to t are denoted with either a dot above the function as in ẋ,
which is common in the optimal control literature, or with an accent as in p′, which
is common in the numerical analysis literature. The meaning of the norm ‖ · ‖∞ is
based on context. If x ∈ C0(Rn), then ‖x‖∞ denotes the maximum of |x(t)| over
t ∈ [−1, 1], where | · | is the Euclidean norm. For a vector v ∈ Rm, ‖v‖∞ is the
maximum of |vi| over 1 ≤ i ≤ m. If A ∈ Rm×n, then ‖A‖∞ is the largest absolute
row sum (the matrix norm induced by the vector sup-norm). We often partition a
vector p ∈ RnN into subvectors pi ∈ Rn, 1 ≤ i ≤ N . Similarly, if p ∈ RmN , then
pi ∈ Rm. The dimension of the identity matrix I is often clear from context; when
necessary, the dimension of I is specified by a subscript. For example, In is the n by n
identity matrix. The gradient is denoted ∇, while ∇2 denotes the Hessian; subscripts
indicate the differentiation variables. Throughout the paper, c is a generic constant
which is independent of the polynomial degree N and the smoothness η, and which
may have different values in different equations. The vector 1 has all entries equal to
one, while the vector 0 has all entries equal to zero; again, their dimension should be
clear from context. If D is the differentiation matrix introduced in (1.8), then Dj is
the jth column of D and Di:j is the submatrix formed by columns i through j. We let
⊗ denote the Kronecker product. If U ∈ Rm×n and V ∈ Rp×q, then U⊗V is the mp
by nq matrix composed of p× q blocks; the (i, j) block is uijV. We let L2(Ω) denote
the usual space of functions square integrable on Ω, while Hp(Ω) is the Sobolev space
consisting of functions with square integrable derivatives through order p. The norm
in Hp(Ω) is denoted ‖ · ‖Hp(Ω). The seminorm in H1(Ω) corresponding to the L2(Ω)
norm of the derivative is denoted | · |H1(Ω). The subspace of H1(Ω) corresponding
to functions that vanish at t = −1 and t = 1 is denoted H1

0(Ω). We let Hp(Ω; Rn)
denote the n-fold Cartesian product Hp(Ω)× · · · × Hp(Ω).

2. Abstract setting. In the introduction, we formulated the discrete optimiza-
tion problem (1.2) and the necessary conditions (1.5)–(1.7) in polynomial spaces.
However, to prove Theorem 1.1, we reformulate the first-order optimality conditions
in Cartesian space. Given a feasible point x ∈ PnN and u ∈ RmN for the discrete
problem (1.2), define Xj = x(τj), 0 ≤ j ≤ N + 1, and Ui = ui, 1 ≤ i ≤ N . As noted
earlier, D is a differentiation matrix in the sense that

N∑
j=0

DijXj = ẋ(τi), 1 ≤ i ≤ N.
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Since ẋ ∈ PnN−1, it follows from the exactness result (1.11) for Gaussian quadrature
that when x satisfies the dynamics of (1.2), we have

XN+1 = x(1) = x(−1) +

∫
Ω

ẋ(t) dt = X0 +

N∑
j=1

ωjf(Xj ,Uj).

Hence, the discrete problem (1.2) can be reformulated as the nonlinear programming
problem

minimize C(XN+1)

subject to

N∑
j=0

DijXj = f(Xi,Ui), Ui ∈ U , 1 ≤ i ≤ N,(2.1)

X0 = x0, XN+1 = X0 +

N∑
j=1

ωjf(Xj ,Uj).

To prove Theorem 1.1, we analyze the existence and stability of solutions to the
first-order optimality conditions associated with the nonlinear programming problem.

We introduce multipliers µj ∈ Rn, 0 ≤ j ≤ N + 1, corresponding to each of the
constraints in the nonlinear program. The first-order optimality conditions correspond
to stationary points of the Lagrangian

C(XN+1)+

N∑
i=1

〈
µi, f(Xi,Ui)−

N∑
j=0

DijXj

〉
+ 〈µ0,x0 −X0〉

+

〈
µN+1,X0 −XN+1 +

N∑
i=1

ωif(Xi,Ui)

〉
.

The stationarity conditions for the Lagrangian appear below.

X0 ⇒ µN+1 = µ0 +

N∑
i=1

Di0µi,(2.2)

Xj ⇒
N∑
i=1

Dijµi = ∇xH(Xj ,Uj ,µj + ωjµN+1), 1 ≤ j ≤ N,(2.3)

XN+1 ⇒ µN+1 = ∇C(XN+1),(2.4)

Ui ⇒ −∇uH (Xi,Ui,µi + ωiµN+1) ∈ NU (Ui), 1 ≤ i ≤ N.(2.5)

Since there are no state constraints, the conditions (2.2)–(2.4) are obtained by setting
to zero the derivative of the Lagrangian with respect to the indicated variables. The
condition (2.5) corresponds to stationarity of the Lagrangian respect to the control.
The relation between multipliers satisfying (2.2)–(2.5) and λ ∈ PnN satisfying (1.5)–
(1.7) is as follows.

Proposition 2.1. The multipliers µ ∈ Rn(N+2) satisfy (2.2)–(2.5) if and only if
the polynomial λ ∈ PnN satisfying the N + 1 interpolation conditions λ(1) = µN+1

and λ(τi) = µN+1 + µi/ωi, 1 ≤ i ≤ N , is a solution of (1.5)–(1.7) and λ(−1) = µ0.

Proof. We start with multipliers µ satisfying (2.2)–(2.5) and show that λ ∈ PnN
satisfying the interpolation conditions λ(1) = µN+1 and λ(τi) = µN+1 + µi/ωi,
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1 ≤ i ≤ N , is a solution of (1.5)–(1.7) with λ(−1) = µ0. The converse follows by
reversing all the steps in the derivation. Define Λi = µN+1 + µi/ωi for 1 ≤ i ≤ N ,
ΛN+1 = µN+1, and Λ0 = µ0. Hence, we have µi = ωi(Λi − ΛN+1) for 1 ≤ i ≤ N .
In (2.5) we divide by ωi and substitute Λi = µN+1 +µi/ωi. In (2.3) we divide by ωj ,
and substitute Λj = µN+1 + µj/ωj and

(2.6) Dij = −
(
ωj
ωi

)
D†ji, D†i,N+1 = −

N∑
j=1

D†ij , 1 ≤ i ≤ N.

With these modifications, (2.3)–(2.5) become

N+1∑
j=1

D†ijΛj = −∇xH (Xi,Ui,Λi) ,(2.7)

ΛN+1 = ∇C(XN+1),(2.8)

NU (Ui) 3 −∇uH (Xi,Ui,Λi) ,(2.9)

1 ≤ i ≤ N . In [18, Thm. 1] it is shown that if λ ∈ PnN is a polynomial that satisfies
the conditions λ(τi) = Λi for 1 ≤ i ≤ N + 1, then

(2.10)

N+1∑
j=1

D†ijΛj = λ̇(τi), 1 ≤ i ≤ N.

This identity coupled with (2.7)–(2.9) implies that (1.5)–(1.7) hold.
Now let us consider the final term in (2.2). Since the polynomial that is identically

equal to 1 has derivative 0 and since D is a differentiation matrix, we have D1 = 0,
which implies that D0 = −

∑N
j=1 Dj , where Dj is the jth column of D. Hence, the

final term in (2.2) can be written

N∑
i=1

µiDi0 = −
N∑
i=1

N∑
j=1

µiDij = −
N∑
i=1

N∑
j=1

ωj

(
µi
ωi

)(
ωiDij

ωj

)

=

N∑
i=1

N∑
j=1

ωiD
†
ij(Λj −ΛN+1) =

N∑
i=1

N+1∑
j=1

ωiD
†
ijΛj .(2.11)

Again, if λ ∈ PnN is the interpolating polynomial that satisfies λ(τi) = Λi for 1 ≤
i ≤ N + 1, then by (2.10), (2.11), and the exactness of Gaussian quadrature for
polynomials in PnN−1, we have

(2.12)

N∑
i=1

µiDi0 =

N∑
i=1

ωiλ̇(τi) =

∫
Ω

λ̇(τ) dτ = λ(1)− λ(−1).

Since λ(1) = λN+1 = µN+1, we deduce from (2.2) and (2.12) that λ(−1) = µ0.

In the proof of Proposition 2.1, Λ0 = µ0 and ΛN+1 = µN+1. We combine (2.2),
(2.7), and (2.11) to obtain

(2.13) ΛN+1 = Λ0 −
N∑
i=1

ωi∇xH(Xi,Ui,Λi).
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Based on Proposition 2.1, the optimality conditions (2.2)–(2.5) are equivalent to (1.5)–
(1.7), which are equivalent to (2.7)–(2.9) and (2.13). This latter formulation, which we
refer to as the transformed adjoint system in our earlier work [22], is most convenient
for the subsequent analysis. This leads us to write the first-order optimality conditions
for (1.2) as an inclusion T (X,U,Λ) ∈ F(U), where

(T0, T1, . . . , T6)(X,U,Λ) ∈ Rn × RnN × Rn × Rn × RnN × Rn × RmN .

The 7 components of T are defined as

T0(X,U,Λ) = X0 − x0,

T1i(X,U,Λ) =

 N∑
j=0

DijXj

− f(Xi,Ui), 1 ≤ i ≤ N,

T2(X,U,Λ) = XN+1 −X0 −
N∑
j=1

ωjf(Xj ,Uj),

T3(X,U,Λ) = ΛN+1 −Λ0 +

N∑
i=1

ωi∇xH(Xi,Ui,Λi),

T4i(X,U,Λ) =

N+1∑
j=1

D†ijΛj

+∇xH(Xi,Ui,Λi), 1 ≤ i ≤ N,

T5(X,U,Λ) = ΛN+1 −∇C(XN+1),

T6i(X,U,Λ) = −∇uH(Xi,Ui,Λi), 1 ≤ i ≤ N.

The components of F are given by

F0 = F1 = · · · = F5 = 0, while F6i(U) = NU (Ui).

The first three components of the inclusion T (X,U,Λ) ∈ F(U) are the con-
straints of (2.1), the next three components describe the discrete costate dynamics,
and the last component is the discrete version of the Pontryagin minimum principle.
The proof of Theorem 1.1 is based on an existence and stability result for local so-
lutions of the inclusion T (X,U,Λ) ∈ F(U). We will apply [10, Prop. 3.1], which is
repeated below for convenience. Other results like this are contained in [8, Thm. 3.1],
in [21, Thm. 1], in [22, Prop. 5.1], and in [23, Thm. 2.1].

Proposition 2.2. Let X be a Banach space and let Y be a linear normed space
with the norms in both spaces denoted ‖ · ‖. Let F : X 7→ 2Y and let T : X 7→ Y with
T continuously Fréchet differentiable in Br(θ

∗) for some θ∗ ∈ X and r > 0. Suppose
that the following conditions hold for some δ ∈ Y and scalars ε and γ > 0:

(C1) T (θ∗) + δ ∈ F(θ∗).
(C2) ‖∇T (θ)−∇T (θ∗)‖ ≤ ε for all θ ∈ Br(θ∗).
(C3) The map (F−∇T (θ∗))−1 is single-valued and Lipschitz continuous with Lip-

schitz constant γ.
If εγ < 1 and ‖δ‖ ≤ (1 − γε)r/γ, then there exists a unique θ ∈ Br(θ

∗) such that
T (θ) ∈ F(θ). Moreover, we have the estimate

(2.14) ‖θ − θ∗‖ ≤ γ

1− γε
‖δ‖.
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We apply Proposition 2.2 with θ∗ = (X∗,U∗,Λ∗) and θ = (XN ,UN ,ΛN ), where
the discrete variables were defined before Theorem 1.1. The key steps in the analysis
are the estimation of the residual ‖T (θ∗)‖, the proof that F −∇T (θ∗) is invertible,
and the proof that (F −∇T (θ∗))−1 is Lipschitz continuous with respect to the norms
in X and Y. In our context, we use the sup-norm for X . In particular,

‖θ‖ = ‖(X,U,Λ)‖∞ = max {‖X‖∞, ‖U‖∞, ‖Λ‖∞} .

For this norm, the left side of (1.9) and the left side of (2.14) are the same. The norm
on Y enters into the estimation of both the distance from ‖T (θ∗)‖ to F(θ∗) (‖δ‖ in
(2.14)) and the Lipschitz constant γ for (F − ∇T (θ∗))−1. In our context, we think
of an element of Y as a large vector with components yl ∈ Rn or Rm. There are N
components in Rm associated with T6, one component in Rn associated with each of
T0, T2, T3, and T5, and N components in Rn associated with T1 and T4. Hence, Y has
dimension mN + 4n+ 2nN which matches the dimension of X since dim(U) = mN ,
dim(X) = (n+ 2)N , and dim(Λ) = (n+ 2)N . For the norm of y ∈ Y, we take

‖y‖Y = |y0|+ |y2|+ |y3|+ |y5|+ ‖y6‖∞ + ‖y1‖ω + ‖y4‖ω.

Here ω-norm used for y1 (state dynamics) and y4 (costate dynamics) is defined by

‖z‖2ω =

(
N∑
i=1

ωi|zi|2
)1/2

, z ∈ RnN .

Note that the ω-norm has the upper bound

(2.15) ‖z‖ω ≤
√

2n‖z‖∞

since the ωi are positive and sum to 2.

3. Interpolation error in H1. Our error analysis is based on a result concern-
ing the error in interpolation at the point set τi, 0 ≤ i ≤ N , where τi for i > 0 are the
N Gauss quadrature points on Ω, and τ0 = −1. In [3, Thm. 4.8], Bernardi and Maday
give an overview of the analysis of error in H1 for interpolation at Gauss quadrature
points. Here we take into account the additional interpolation point τ0 = −1 and
provide a complete derivation of the interpolation error estimate.

Lemma 3.1. If u ∈ Hη(Ω) for some η ≥ 1, then there exists a constant c, inde-
pendent of N and η, such that

(3.1)
∣∣u− uI ∣∣H1(Ω)

≤ (c/N)p−3/2‖u‖Hp(Ω), p = min{η,N + 1},

where uI ∈ PN is the interpolant of u satisfying uI(τi) = u(τi), 0 ≤ i ≤ N , and
N > 0.

Proof. Throughout the analysis, c denotes a generic constant whose value is in-
dependent of N and η, and which may have different values in different equations.
Let ` denote the linear function for which `(±1) = u(±1). If the lemma holds for
all u ∈ H1

0(Ω) ∩ Hη(Ω), then it holds for all u ∈ Hη(Ω) since |u − uI |H1(Ω) =
|(u − `) − (u − `)I |H1(Ω) and ‖u − `‖Hp(Ω) ≤ c‖u‖Hp(Ω). Hence, without loss of
generality, it is assumed that u ∈ H1

0(Ω) ∩Hη(Ω).
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Let πNu denote the projection of u into P0
N relative to the norm | · |H1(Ω). Define

EN = u− πNu and eN = EIN = (u− πNu)I = uI − πNu. Since EN − eN = u− uI , it
follows that

(3.2)
∣∣u− uI ∣∣H1(Ω)

≤ |EN |H1(Ω) + |eN |H1(Ω).

In [13, Prop. 3.1] it is shown that

(3.3) |EN |H1(Ω) ≤ (c/N)p−1‖u‖Hp(Ω), where p = min{η,N + 1}.

We establish below the bound

(3.4) |eN |H1(Ω) ≤ c
√
N |EN |H1(Ω).

Estimate (3.1) follows, for an appropriate choice of c, by combining (3.2)–(3.4).
The proof of (3.4) proceeds as follows: Let φN be defined by

(3.5) φN (τ) = eN (τ)− eN (1)wN (τ), where wN (τ) =
(1 + τ)P ′N (τ)

N(N + 1)
.

Since PN , the Legendre polynomial of degree N , satisfies P ′N (1) = N(N + 1)/2, it
follows that wN (1) = 1 and φN (1) = 0. Moreover, since wN (−1) = 0 and eN (−1) =
eN (τ0) = 0, we conclude that φN (−1) = 0 and φN ∈ P0

N . In [3, Lem. 4.4] it is shown
that any φN ∈ P0

N satisfies

|φN |H1(Ω) ≤ cN
(∫

Ω

φ2
N (τ)

1− τ2
dτ

)1/2

.

Hence, by (3.5), we have

(3.6) |eN |H1(Ω) ≤ cN
(∫

Ω

φ2
N (τ)

1− τ2
dτ

)1/2

+ |wN |H1(Ω)|eN (1)|.

Rodrigues’ formula for PN and integration by parts give

‖P ′N‖L2(Ω) =
√
N(N + 1).

It follows that

‖wN‖L2(Ω) ≤
2√

N(N + 1)
≤ 2

N
.

Bellman’s [1] inequality∫
Ω

p′(τ)2 dt ≤ (N + 1)4

2

∫
Ω

p(τ)2 dt for all p ∈ PN

implies that

|wN |H1(Ω) = ‖w′N‖L2(Ω) ≤
√

2(N + 1)2

N
≤ cN.

We combine this bound for |wN |H1(Ω) with (3.6) to obtain

(3.7) |eN |H1(Ω) ≤ cN

[(∫
Ω

φ2
N (τ)

1− τ2
dτ

)1/2

+ |eN (1)|

]
.
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Since eN = EIN and EN (−1) = 0, the interpolant can be expressed

eN (τ) = EIN (τ) =

N∑
i=1

EN (τi)

(
(τ + 1)PN (τ)

(τi + 1)P ′N (τi)(τ − τi)

)
,

where the expression in parentheses is the Lagrange interpolating polynomial; it van-
ishes at τ = τj for 0 ≤ j ≤ N and j 6= i since the numerator vanishes, while it is one
at τ = τi since

PN (τ)/(τ − τi)
P ′N (τ)

∣∣∣∣
τ=τi

=

∏
j 6=i(τi − τj)∏
j 6=i(τi − τj)

= 1.

At τ = 1, it follows from the Schwarz inequality that

|eN (1)| ≤
N∑
i=1

2|EN (τi)|
(1− τ2

i )|P ′N (τi)|
≤ 2
√
N

(
N∑
i=1

E2
N (τi)

(1− τ2
i )2P ′N (τi)2

)1/2

.

Replace 2/[(1− τ2
i )P ′N (τi)

2] by ωi using (1.10) to obtain

(3.8) |eN (1)| ≤
√

2N

(
N∑
i=1

ωiE
2
N (τi)

1− τ2
i

)1/2

.

Since EN ∈ H1
0(Ω), it follows from [3, Lem. 4.3] that

(3.9)

(
N∑
i=1

ωiE
2
N (τi)

1− τ2
i

)1/2

≤ c

[(∫
Ω

E2
N (τ)

1− τ2
dτ

)1/2

+N−1|EN |H1(Ω)

]
.

By Proposition 10.1 in Appendix 2,

(3.10) N

[(∫
Ω

E2
N (τ)

1− τ2
dτ

)1/2

+N−1|EN |H1(Ω)

]
≤ 2|EN |H1(Ω).

Together, (3.9) and (3.10) give

(3.11)

(
N∑
i=1

ωiE
2
N (τi)

1− τ2
i

)1/2

≤ (c/N)|EN |H1(Ω).

Combine (3.8) and (3.11) to obtain

(3.12) |eN (1)| ≤
(
c/
√
N
)
|EN |H1(Ω).

Since φN ∈ P0
N , we deduce that φ2

N (τ)/(1− τ2) ∈ P2N−2. Consequently, N -point
Gaussian quadrature is exact, and we have(∫

Ω

φ2
N (τ)

1− τ2
dτ

)1/2

=

(
N∑
i=1

ωiφ
2
N (τi)

1− τ2
i

)1/2

≤

(
N∑
i=1

ωie
2
N (τi)

1− τ2
i

)1/2

+ |eN (1)|

(
N∑
i=1

ωiw
2
N (τi)

1− τ2
i

)1/2

=

(
N∑
i=1

ωiE
2
N (τi)

1− τ2
i

)1/2

+ |eN (1)|

(
N∑
i=1

ωiw
2
N (τi)

1− τ2
i

)1/2

.
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The last equality holds since eN = EN at the collocation points τi, 1 ≤ i ≤ N . In [3,
eq. (4.15)], it is proved that

(3.13)

N∑
i=1

ωiw
2
N (τi)

1− τ2
i

≤ c.

Combine (3.11), (3.12), and (3.13) to obtain

(3.14)

(∫
Ω

φ2
N (τ)

(1− τ2)
dτ

)1/2

≤ (c/
√
N)|EN |H1(Ω).

Finally, (3.7), (3.12), and (3.14) yield (3.4), which completes the proof.

4. Analysis of the residual. In this section, we establish a bound for the
distance from T (X∗,U∗,Λ∗) to F(U∗). This bound ultimately enters into the right-
hand side of the error estimate (1.9).

Lemma 4.1. If x∗ and λ∗ ∈ Hη(Ω; Rn) for some η ≥ 2, then there exists a
constant c, independent of N and η, such that

(4.1) dist[T (X∗,U∗,Λ∗), F(U∗)] ≤
( c
N

)p−3/2 (
‖x∗‖Hp(Ω) + ‖λ∗‖Hp(Ω)

)
,

where p = min{η,N + 1}. The left-hand side of (4.1) denotes the distance from
T (X∗,U∗,Λ∗) to F(U∗) relative to ‖ · ‖Y .

Proof. Since T (X∗,U∗,Λ∗) appears throughout the analysis, it is abbreviated T ∗.
The feasibility of x∗ in (1.1) implies that X∗0 = x0, or T ∗0 = 0. By the costate equation
(1.3), Λ∗N+1 = λ∗(1) = ∇C(x∗(1)) = ∇C(X∗N+1), which implies that T ∗5 = 0. By
the Pontryagin minimum principle (1.4),

−∇uH(X∗i ,U
∗
i ,Λ

∗
i ) = −∇uH(x∗(τi),u

∗(τi),λ
∗(τi)) ∈ F(u∗(τi)) = F(U∗i ),

1 ≤ i ≤ N . Thus T ∗0 = T ∗5 = 0, T ∗6 ∈ F6(U∗).
Now let us consider T1. Since D is a differentiation matrix associated with the

collocation points, we have

(4.2)

N∑
j=0

DijX
∗
kj = ẋI(τi), 1 ≤ i ≤ N,

where xI ∈ PnN is the interpolating polynomial that passes through x∗(τj) for 0 ≤
j ≤ N , and ẋI is the derivative of xI . Since x∗ satisfies the dynamics of (1.1),

(4.3) f(X∗i ,U
∗
i ) = f(x∗(τi),u

∗(τi)) = ẋ∗(τi).

Combine (4.2) and (4.3) to obtain

(4.4) T ∗1i = ẋI(τi)− ẋ∗(τi), 1 ≤ i ≤ N.

Let (ẋ∗)J ∈ PnN−1 denote the interpolant that passes through ẋ∗(τi) for 1 ≤ i ≤ N .
Since both ẋI and (ẋ∗)J are polynomials of degree N − 1 and Gaussian quadrature
is exact for polynomials of degree 2N − 1, it follows that

‖T ∗1 ‖ω = ‖ẋI − (ẋ∗)J‖L2(Ω) ≤ ‖ẋI − ẋ∗‖L2(Ω) + ‖ẋ∗ − (ẋ∗)J‖L2(Ω).
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By Lemma 3.1, ‖ẋI − ẋ∗‖L2(Ω) ≤ (c/N)p−3/2‖x∗‖Hp(Ω). By [3, Cor. 3.2] and [13,
Prop. 3.1], it follows that ‖ẋ∗ − (ẋ∗)J‖L2(Ω) ≤ (c/N)p−1‖x∗‖Hp(Ω). Hence, we have

(4.5) ‖T ∗1 ‖ω =
∥∥ẋI − (ẋ∗)J

∥∥
L2(Ω)

≤ (c/N)p−3/2‖x∗‖Hp(Ω).

The analysis of T4 is identical to that of T1; the only adjustment is that λI is the
interpolating polynomial that passes through λ∗(τj) for 1 ≤ j ≤ N + 1. Next, let us
consider

(4.6) T ∗2 = x∗(1)− x∗(−1)−
N∑
j=1

ωjf(x∗(τj),u
∗(τj)).

By the fundamental theorem of calculus and the exactness of Gaussian quadrature,
we have

(4.7) 0 = xI(1)− xI(−1)−
∫

Ω

ẋI(t) dt = xI(1)− xI(−1)−
N∑
j=1

ωjẋ
I(τj).

Subtract (4.7) from (4.6) and substitute ẋ∗(τj) = f(x∗(τj),u
∗(τj)) to obtain

(4.8) T ∗2 =
(
x∗ − xI

)
(1) +

N∑
j=1

ωj
(
ẋI(τj)− ẋ∗(τj)

)
.

Since the ωi are positive and sum to 2, it follows from the Schwarz inequality and
(4.5) that∣∣∣∣∣∣

N∑
j=1

ωj
(
ẋI(τj)− ẋ∗(τj)

)∣∣∣∣∣∣ ≤
 N∑
j=1

ωi

1/2 N∑
j=1

ωj
∣∣ẋI(τj)− ẋ∗(τj)

∣∣21/2

=
√

2
∥∥ẋI − (ẋ∗)J

∥∥
L2(Ω)

≤ (c/N)p−3/2‖x∗‖Hp(Ω).(4.9)

Also, writing (x∗−xI)(1) as the integral of the derivative from −1 to 1 and applying
the Schwarz inequality yields

(4.10)
∣∣x∗(1)− xI(1)

∣∣ ≤ √2
∥∥ẋ∗ − ẋI

∥∥
L2(Ω)

≤ (c/N)p−3/2‖x∗‖Hp(Ω),

where the last equality is by Lemma 3.1. Combine (4.8), (4.9), and (4.10) to obtain
|T ∗2 | ≤ (c/N)p−3/2‖x∗‖Hp(Ω). The analysis of T3 is the same as that of T2. This
completes the proof.

5. Invertibility of linearized dynamics. In this section, we introduce the
linearized inclusion and established the invertibility of the linearized dynamics for
both the state and costate. Given Y ∈ Y, the linearized problem is to find (X,U,Λ)
such that

(5.1) ∇T (X∗,U∗,Λ∗)[X,U,Λ] + Y ∈ F(U).

Here ∇T (X∗,U∗,Λ∗)[X,U,Λ] denotes the derivative of T evaluated at (X∗,U∗,Λ∗)
operating on [X,U,Λ]. Since ∇T (X∗,U∗,Λ∗) appears frequently in the analysis, it
is abbreviated ∇T ∗. This derivative involves the following matrices:

Ai = A(τi), Bi = B(τi), Qi = Q(τi), Si = S(τi), Ri = R(τi).
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With this notation, the 7 components of ∇T ∗[X,U,Λ] are as follows:

∇T ∗0 [X,U,Λ] = X0,

∇T ∗1i[X,U,Λ] =

 N∑
j=1

DijXj

−AiXi −BiUi, 1 ≤ i ≤ N,

∇T ∗2 [X,U,Λ] = XN+1 −X0 −
N∑
j=1

ωj(AjXj + BjUj),

∇T ∗3 [X,U,Λ] = ΛN+1 −Λ0 +

N∑
j=1

ωj(A
T
j Λj + QjXj + SjUj),

∇T ∗4i[X,U,Λ] =

N+1∑
j=1

D†ijΛj

+ AT
i Λi + QiXi + SiUi, 1 ≤ i ≤ N,

∇T ∗5 [X,U,Λ] = ΛN+1 −TXN+1,

∇T ∗6i[X,U,Λ] = −(ST
i Xi + RiUi + BT

i Λi), 1 ≤ i ≤ N.

Let us first study the invertibility of the linearized dynamics. This amounts to
solving for the state in (5.1) for given values of the control.

Lemma 5.1. If (P1), (P2), and (A2) hold, then for each q0 and q1 ∈ Rn and
p ∈ RnN with pi ∈ Rn, 1 ≤ i ≤ N , the linear system N∑

j=0

DijXj

−AiXi = pi 1 ≤ i ≤ N,(5.2)

XN+1 −X0 −
N∑
j=1

ωjAjXj = q1, X0 = q0,(5.3)

has a unique solution X ∈ Rn(N+2). Moreover, there exists a constant c, independent
of N , such that

(5.4) ‖X‖∞ ≤ c(|q0|+ |q1|+ ‖p‖ω).

Proof. Let X be the vector obtained by vertically stacking X1 through XN , let
A be the block diagonal matrix with ith diagonal block Ai, 1 ≤ i ≤ N , and define
D = D1:N ⊗ In, where ⊗ is the Kronecker product. With this notation, the linear
system (5.2) can be expressed

(5.5) (D−A)X = p− (D0 ⊗ In)q0.

Here D0 is the first column of D and the X0 = q0 component of X has been moved
to the right side of the equation. By (P1) D1:N is invertible, which implies that D is

invertible with D
−1

= D−1
1:N ⊗ In. Moreover, ‖D−1‖∞ = ‖D−1

1:N‖∞ ≤ 2 by (P1). By

(A2) ‖A‖∞ ≤ β and ‖D−1
A‖∞ ≤ ‖D

−1‖∞‖A‖∞ ≤ 2β < 1 since β < 1/2. By [29,

p. 351], I−D
−1

A is invertible and

(5.6)

∥∥∥∥(I−D
−1

A
)−1

∥∥∥∥
∞
≤ 1/(1− 2β).
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Multiply (5.5) first by D
−1

and then by (I−D
−1

A)−1 to obtain

X =
(
I−D

−1
A
)−1 (

D
−1

p + D
−1

(D0 ⊗ In)q0

)
.

We take the norm of X and utilize (5.6) to find that

(5.7) ‖X‖∞ ≤
(

1

1− 2β

)[∥∥∥D−1
p
∥∥∥
∞

+
∥∥∥D−1

(D0 ⊗ In)q0

∥∥∥
∞

]
.

Since the polynomial that is identically equal to 1 has derivative 0 and since D is
a differentiation matrix, we have D1 = 0, which implies that D1:N1 = −D0. Hence,
D−1

1:ND0 = −1. It follows that

(D)−1[D0 ⊗ In] =
[
(D1:N )−1 ⊗ In

]
[D0 ⊗ In] = −1⊗ In.

We make this substitution in (5.7) and use the bound for the sup-norm in terms of
the Euclidean norm to obtain

‖X‖∞ ≤
(

1

1− 2β

)(∥∥∥D−1
p
∥∥∥
∞

+ |q0|
)
.

Observe that

D
−1

p =
(
D−1

1:N ⊗ In
)
p =

(
D−1

1:NW−1/2 ⊗ In

) [(
W1/2 ⊗ In

)
p
]
,

where W is the diagonal matrix with the quadrature weights on the diagonal. Based

on this identity, an element of D
−1

p is the dot product between a row of (D−1
1:NW−1/2⊗

In) and the column vector (W1/2 ⊗ In)p.
By the Schwarz inequality, this dot product is bounded by the product between

the largest Euclidean length of the rows of the matrix and the Euclidean length of
the vector. By (P2), the Euclidean lengths of the rows of [W1/2D1:N ]−1 are bounded
by
√

2, and by the definition of the ω-norm, we have |(W1/2 ⊗ In)p| = ‖p‖ω. Hence,
we have

(5.8)
∥∥∥D−1

p
∥∥∥
∞
≤
√

2‖p‖ω and ‖X‖∞ ≤
(

1

1− 2β

)(√
2‖p‖ω + |q0|

)
.

By the first equation in (5.3),

‖XN+1‖∞ ≤ ‖q0‖∞ + ‖q1‖∞ +

N∑
j=1

ωj‖Aj‖∞‖Xj‖∞.

Since the ωj sum to 2, ‖Aj‖ ≤ β < 1/2, and the sup-norm is bounded by the Euclidean
norm, it follows that

(5.9) ‖XN+1‖∞ ≤ |q0|+ |q1|+ ‖X‖∞.

Combine (5.8) and (5.9) to obtain (5.4).

Next, let us consider the linearized costate dynamics.
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Lemma 5.2. If (P1), (P2), and (A2) hold, then for each q0 and q1 ∈ Rn and
p ∈ RnN with pi ∈ Rn, 1 ≤ i ≤ N , the linear systemN+1∑

j=1

D†ijΛj

+ AT
i Λi = pi 1 ≤ i ≤ N,(5.10)

ΛN+1 −Λ0 +

N∑
j=1

ωjA
T
j Λj = q0, ΛN+1 = q1,(5.11)

has a unique solution Λ ∈ Rn(N+2). Moreover, there exists a constant c, independent
of N , such that

(5.12) ‖Λ‖∞ ≤ c(|q0|+ |q1|+ ‖p‖ω).

Proof. As noted in (2.10), D† is a differentiation matrix, analogous to D, except
that D† operates on function values at τ1, . . . , τN+1, while D operates on function
values at τ0, . . . , τN . The proof is identical to that of Lemma 5.1 except that ΛN+1

plays the role of X0, while Λ0 plays the role of XN+1.

6. Invertibility of F−∇T ∗ and Lipschitz continuity of the inverse. The
invertibility of F −∇T ∗ is now established.

Proposition 6.1. If (A1)–(A2) and (P1)–(P2) hold, then for each Y ∈ Y, there
is a unique solution (X,U,Λ) to (5.1).

Proof. As in our earlier work [5, 6, 7, 10, 21, 24, 25, 26], we formulate a strongly
convex quadratic programming problem whose first-order optimality conditions reduce
to (5.1). Let us consider the problem

(6.1)

minimize 1
2Q(X,U) + L(X,U,Y)

subject to
∑N
j=1DijXj = AiXi + BiUi − y1i, Ui ∈ U , 1 ≤ i ≤ N,

X0 = −y0, XN+1 = X0 − y2 +
∑N
j=1 ωj (AjXj + BjUj) .

Here the quadratic and linear terms in the objective are

Q(X,U) = XT
N+1TXN+1 +

N∑
i=1

ωi
(
XT
i QiXi + 2XT

i SiUi + UT
i RiUi

)
,

L(X,U,Y) = XT
0

(
y3 −

N∑
i=1

ωiy4i

)
− yT

5 XN+1 +
N∑
i=1

ωi
(
yT

4iXi − yT
6iUi

)
.

In (6.1), the minimization is over X and U, while Y is a fixed parameter. By
Lemma 5.1, the quadratic program (6.1) is feasible for any choice of y0, y1, and
y2. Since X0 = −y0, X0 can be eliminated from the quadratic program (6.1). By
(A1), the quadratic program is strongly convex with respect to X1, . . . ,XN+1, and
U1, . . . ,UN . Hence, there exists a unique state and control solving (6.1). Next, we will
show that the first-order optimality conditions for (6.1) reduce to (5.1). These condi-
tions hold since U has nonempty interior and the state dynamics have full row rank
by Lemma 5.1. Due to the convexity of the objective and constraints, the first-order
optimality conditions are both necessary and sufficient for optimality. Uniqueness of
X and U is due to (A1) and the strong convexity of (6.1). Uniqueness of Λ is by
Lemma 5.2.



GAUSS COLLOCATION IN CONSTRAINED OPTIMAL CONTROL 1403

Now let us show that (5.1) corresponds to the optimality conditions for (6.1).
Components 0, 1, and 2 of (5.1) are simply the constraints of (6.1). The remaining
optimality conditions are associated with the Lagrangian L given by

L(µ,X,U)

= 1
2Q(X,U) + L(X,U,Y) +

N∑
i=1

〈
µi,AiXi + BiUi − y1i −

N∑
j=0

DijXj

〉

− 〈µ0,X0 + y1〉+

〈
µN+1,X0 −XN+1 − y2 +

N∑
j=1

ωj (AjXj + BjUj)

〉
.

The negative derivative of the Lagrangian with respect to Ui is

ωi
(
y6i − ST

i Xi −RiUi −BT
i µN+1

)
−BT

i µi.

Substitute µN+1 = ΛN+1 and µi = ωi(Λi − ΛN+1), 1 ≤ i ≤ N . The requirement
that the resulting vector lies in NU (Ui) is the sixth component of (5.1). Equate to
zero the derivative of the Lagrangian with respect to XN+1 to obtain

0 = TXN+1 − y5 − µN+1 = TXN+1 − y5 −ΛN+1.

This is the fifth component of (5.1). The derivative of the Lagrangian with respect to
Xj , 1 ≤ j ≤ N , gives the relation

N∑
i=1

Dijµi = AT
j (µj + ωjµN+1) + ωj(QjXj + SjUj + y4j).

Change variables from µ to Λ and substitute for Dij using (2.6) to obtain the fourth
component of (5.1). Finally, differentiate the Lagrangian with respect to X0 to obtain

µN+1 − µ0 + y3 −
N∑
i=1

ωiy4i −
N∑
i=1

Di0µi = 0.

Substitute for the Di0 sum using both (2.11) and the fourth component of (5.1) to
obtain the third component of (5.1).

We now wish to bound the change in the solution of (6.1) in terms of the change
in Y. Let χ(Y) denote the solution of the state dynamics (5.2)–(5.3) associated
with p = y1, q0 = y0, and q1 = y2. In (6.1) we make the change of variables
X = Z + χ(Y). The dynamics of (6.1) become

(6.2)

N∑
j=1

DijZj = AiZi + BiUi, Z0 = 0, ZN+1 =

N∑
j=1

ωj (AjZj + BjUj) .

Hence, the effect of the variable change is to remove Y from the constraints. After
the change of variables, the linear term in the objective of (6.1) reduces to

L̂(Z,U,Y) = yT
5 ZN+1 −

N∑
i=1

ωi
(
yT

4iZi + yT
6iUi

)
+ ZT

N+1TχN+1(Y) +

N∑
i=1

ωi
[
ZT
i Qiχi(Y) + UT

i ST
i χi(Y)

]
,
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since Z0 = 0. Let (Zj ,Uj) denote the solution of (6.1) corresponding to Yj ∈ Y,
j = 1, and 2. By [6, Lem. 4], the solution change satisfies the relation

(6.3) Q(∆Z,∆U) ≤ |L̂(∆Z,∆U,∆Y)|,

where ∆Z = Z1 − Z2, ∆U = U1 −U2, and ∆Y = Y1 −Y2.
By (A1) we have the lower bound

(6.4) Q(∆Z,∆U) ≥ α(|∆ZN+1|2 + ‖∆Z‖2ω + ‖∆U‖2ω),

where ∆Z is the subvector of ∆Z corresponding to components 1 through N . The
Schwarz inequality applied to the linear terms in (6.3) yields the upper bound∣∣∣L̂(∆Z,∆U,∆Y)

∣∣∣
≤ c
(
|∆ZN+1|+ ‖∆Z‖ω + ‖∆U‖ω

)(
‖∆Y‖Y + ‖χ(∆Y)‖ω + |χN+1(∆Y)|

)
.

By (2.15), ‖χ(∆Y)‖ω ≤
√

2n‖χ(∆Y)‖∞, and by Lemma 5.1, ‖χ(∆Y)‖∞ ≤ c‖∆Y‖Y .
Hence, the upper bound simplifies to

(6.5)
∣∣∣L̂(∆Z,∆U,∆Y)

∣∣∣ ≤ c‖∆Y‖Y
(
|∆ZN+1|) + ‖∆Z‖ω + ‖∆U‖ω

)
.

Combine (6.3)–(6.5) to obtain the Lipschitz result

(6.6) |∆ZN+1|+ ‖∆Z‖ω + ‖∆U‖ω ≤ c‖∆Y‖Y .

By (6.2), we see that ∆Z is the solution of (5.2)–(5.3) corresponding to

q0 = 0, pi = Bi∆Ui, q1 =

N∑
j=1

ωjBj∆Uj .

By (6.6), it follows that

(6.7) ‖B∆U‖ω ≤ c‖∆U‖ω ≤ c‖∆Y‖Y ,

where B is the block diagonal matrix with ith diagonal block Bi. Moreover, by the
Schwarz inequality and (6.7), we have

(6.8)

∣∣∣∣∣∣
N∑
j=1

ωjBj∆Uj

∣∣∣∣∣∣ ≤
 N∑
j=1

ωj

1/2  N∑
j=1

ωj |Bj∆Uj |2
1/2

≤ c‖∆Y‖Y .

Hence, this choice for q0, q1, and p together with Lemma 5.1 and the bounds (6.7) and
(6.8) imply that ‖∆Z‖∞ ≤ c‖∆Y‖Y . Since ∆X = ∆Z+χ(∆Y) where ‖χ(∆Y)‖∞ ≤
c‖∆Y‖Y by Lemma 5.1, we conclude that

(6.9) ‖∆X‖∞ ≤ c‖∆Y‖Y .

Now consider the costate dynamics (5.10)–(5.11) with

q0 = −

∆y3 +

N∑
j=1

ωj [Qj∆Xj + Sj∆Uj ]

 ,

pi = − (∆y4i + Qi∆Xi + Si∆Ui) ,

q1 = −∆y5 + T∆XN+1.
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By (2.15) and (6.9), we have

(6.10) ‖Q∆X‖ω ≤ c‖∆X‖ω ≤ c‖∆X‖∞ ≤ c‖∆Y‖Y ,

where Q is the block diagonal matrix with ith diagonal block Qi. The Si∆Ui term
associated with pi can be analyzed as in (6.7) and the Sj∆Uj terms in q0 can be
analyzed as in (6.8). Analogous to the state dynamics, it follows from Lemma 5.2
that

(6.11) ‖∆Λ‖∞ ≤ c‖∆Y‖Y .

Let [X(Y),U(Y),Λ(Y)] denote the solution of (5.1) for given Y ∈ Y. From the
last component of the inclusion (5.1) and for any i between 1 and N , we have[

y6 − ST
i Xi(Y)−RiUi(Y)−BT

i Λi(Y)
]T

(V −Ui(Y)) ≤ 0 for all V ∈ U .

We add the inequality corresponding to Y = Y1 and V = Ui(Y
2) to the inequality

corresponding to Y = Y2 and V = Ui(Y
1) to obtain the inequality

∆UT
i Ri∆Ui ≤

[
−∆y6 + ST∆Xi + BT

i ∆Λi

]T
∆Ui.

By (A1) and the Schwarz inequality, it follows that

‖∆Ui‖∞ ≤ |∆Ui| ≤ c(|∆y6|+ |∆Xi|+ |∆Λi|).

We utilize the previously established bounds (6.9) and (6.11) to obtain ‖∆U‖∞ ≤
‖∆Y‖Y . The following lemma summarizes these observations.

Lemma 6.2. If (A1)–(A2) and (P1)–(P2) hold, then there exists a constant c,
independent of N , such that the change (∆X,∆U,∆Λ) in the solution of (5.1) cor-
responding to a change ∆Y in Y ∈ Y satisfies

max {‖∆X‖∞, ‖∆U‖∞, ‖∆Λ‖∞} ≤ c‖∆Y‖Y .

Theorem 1.1 follows from Lemma 6.2 and Proposition 2.2; the proof is a small
modification of the analysis in [26, Thm. 2.1]. The Lipschitz constant µ of Propo-
sition 2.2 is the constant c of Lemma 6.2. Choose ε small enough that εµ < 1.
When we compute the difference ∇T (X,U,Λ)−∇T (X∗,U∗,Λ∗) for (X,U,Λ) near
(X∗,U∗,Λ∗), the D and D† constant terms cancel, and we are left with terms in-
volving the difference of derivatives of f or C up to second order at nearby points.
By the smoothness assumption, these second derivatives are uniformly continuous on
the closure of O and on a ball around x∗(1). Utilizing (2.15), it follows that for r
sufficiently small,

‖∇T (X,U,Λ)−∇T (X∗,U∗,Λ∗)‖Y ≤ ε

whenever

(6.12) max{‖X−X∗‖∞, ‖U−U∗‖∞, ‖Λ−Λ∗‖∞} ≤ r.

Since the smoothness η ≥ 2 in Theorem 1.1, let us choose η = 2 in Lemma 4.1 and
then take N large enough that ‖T (X∗,U∗,Λ∗)‖Y ≤ (1 − µε)r/µ for all N ≥ N .
Hence, by Proposition 2.2, there exists a solution to T (X,U,Λ) ∈ F(U) satisfying
(6.12). Moreover, by (2.14) and (4.1), the estimate (1.9) holds. We can use exactly
the same argument given in [26] to show that this solution to the first-order condition
T (X,U,Λ) ∈ F(U) is a local minimizer of (1.2) or equivalently, of (2.1).
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Fig. 1. Logarithm of sup-norm error in state, control, and costate versus polynomial degree.

7. Numerical experiments. We consider the problem from [27] given by

minimize
1

2

∫ 1

0

[x2(t) + u2(t)] dt

subject to ẋ(t) = u(t), u(t) ≤ 1, t ∈ Ω, x(0) =
1 + 3e

2(1− e)
.(7.1)

The optimal state and control are

0 ≤ t ≤ 1

2
: x∗(t) = t+

1 + 3e

2(1− e)
, u∗(t) = 1,

1

2
≤ t ≤ 1 : x∗(t) =

et + e2−t
√
e(1− e)

, u∗(t) =
et − e2−t
√
e(1− e)

.

The associated costate is the integral of the state from t to 1. Since the objective of
the test problem is quadratic and the constraints are linear equalities and inequalities,
the discrete problem (2.1) is a quadratic programming problem, which we solved using
the MATLAB routine quadprog. In Figure 1, we plot in base 10 the logarithm of the
sup-norm error in the state, control, and costate versus the logarithm of the degree of
the polynomial in the discrete problem. Since the optimal state has a discontinuity
in its second derivative at t = 1/2, x∗ lies in H2([0, 1]) as well as in the fractional
Sobolev space H2.5−ε([0, 1]) for any ε > 0. Theorem 1.1 implies that the error is
O(N ε−1). On the other hand, the observed convergence rate in Figure 1 is O(N−2),
so the error bound given in Theorem 1.1 is not tight, at least for this particular test
problem.

8. Conclusions. An estimate is obtained for the sup-norm error in an approxi-
mation to a control constrained variational problem where the state is approximated
by a polynomials of degree N and the dynamics is enforced at the Gauss quadra-
ture points. The error is bounded by (c/N)p−3/2 times the Hp norms of the state
and costate, where p is the minimum of N + 1 and the smoothness η; it is assumed
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that η ≥ 2. In [26], an unconstrained control problem was considered and the corre-
sponding bound was (c/N)p−3 with η ≥ 4. The new work advances the convergence
theory by significantly improving the exponent in the convergence rate, by relaxing
the smoothness requirement, and by including control constraints. When control con-
straints are present, η is often at most 2, so the relaxation in the smoothness condition
is needed to treat control constrained problems. When control constraints are intro-
duced, the first-order optimality conditions lead to a variational inequality, and the
analysis centers on the stability of the linearized variational problem under pertur-
bations. The improvements in the convergence theory were achieved by analyzing
the effect of perturbations in an L2(Ω) setting rather in L∞(Ω), and by analyzing
interpolation errors in the Sobolev space Hp(Ω) rather than in L∞(Ω). A numerical
example indicates that further tightening of the convergence theory may be possible.

9. Appendix 1: Proof of (P1). Let p ∈ PN be any polynomial for which
p(−1) = 0 and let p and ṗ ∈ RN denote the vectors with components p(τi) and
ṗ(τi), respectively, 1 ≤ i ≤ N . Since p(−1) = 0, the differentiation matrix D satisfies
D1:Np = ṗ, or equivalently, D−1

1:N ṗ = p. Let rT denote the jth row of D−1
1:N for any

j between 1 and N , and let ṗ have components +1 or −1, where the sign is chosen
so that

rTṗ =

N∑
i=1

|ri|.

Due to the identity D−1
1:N ṗ = p, we conclude that

N∑
i=1

|ri| = p(τj).

Hence, (P1) holds if |p(τj)| ≤ 2 whenever p ∈ PN is a polynomial that satisfies
p(−1) = 0 and |ṗ(τi)| ≤ 1 for all 1 ≤ i ≤ N . We will prove the following stronger
result.

Proposition 9.1. For any p ∈ PN with p(−1) = 0 and |ṗ(τi)| ≤ 1 for all 1 ≤
i ≤ N , we have |p(τ)| ≤ 2 for all τ ∈ [−1, 1].

Proof. Let li, 1 ≤ i ≤ N , be the Lagrange interpolating polynomials defined by

li(τ) =

N∏
j=1
j 6=i

τ − τj
τi − τj

.

Let p ∈ PN be any polynomial with p(−1) = 0 and |ṗ(τi)| ≤ 1 for all 1 ≤ i ≤ N .
Since ṗ ∈ PN−1, we can write

ṗ(τ) =

N∑
i=1

ṗ(τi)li(τ).

Since |ṗ(τi)| ≤ 1, it follows that

(9.1) |p(t)| =
∣∣∣∣∫ t

−1

ṗ(τ) dτ

∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

ṗ(τi)

∫ t

−1

li(τ) dτ

∣∣∣∣∣ ≤
N∑
i=1

∣∣∣∣∫ t

−1

li(τ) dτ

∣∣∣∣ .
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Let q ∈ PN−1 be defined by

q(τ) =

N∑
i=1

aili(τ), where ai =

 1 if

∫ t

−1

li(τ) dτ > 0,

−1 otherwise.

Hence, we have

(9.2)

N∑
i=1

∣∣∣∣∫ t

−1

li(τ) dτ

∣∣∣∣ =

N∑
i=1

ai

∫ t

−1

li(τ) dτ =

∫ t

−1

q(τ) dτ.

Since |q(τi)| = |ai| = 1 for each i, it follows that q2(τ) − 1 vanishes at τ = τi,
1 ≤ i ≤ N . Since q2 ∈ P2N−2, we have the factorization

(9.3) q2(τ)− 1 = r(τ)PN (τ),

where r ∈ PN−2 and PN is the Legendre polynomial of degree N . Since PN is
orthogonal to polynomials of degree at most N − 1, the integral of (9.3) yields the
identity ∫ 1

−1

q2(τ) dτ = 2.

By the Schwarz inequality,∫ 1

−1

|q(τ)| dτ ≤
(∫ 1

−1

dτ

)1/2(∫ 1

−1

q2(τ) dτ

)1/2

= 2.

Combine this with (9.1) and (9.2) to obtain

|p(t)| ≤
∫ 1

−1

|q(τ)| dτ ≤ 2,

which completes the proof.

Although this paper has focused on the Gauss abscissa, Proposition 9.1 holds
when the Gauss abscissa are replaced by the Radau abscissa.

Corollary 9.2. If τi, 1 ≤ i ≤ N , are the Radau abscissa with τN = 1, then for
any p ∈ PN with p(−1) = 0 and |ṗ(τi)| ≤ 1 for all 1 ≤ i ≤ N , we have |p(τ)| ≤ 2 for
all τ ∈ [−1, 1].

Proof. Recall that the interior Radau abscissa τi, 1 ≤ i ≤ N − 1, are the roots of

the Jacobi polynomial P
(1,0)
N−1 associated with the weight function 1− τ . The proof of

the corollary is identical to the proof of Proposition 9.1 until (9.3), which is replaced
by

(9.4) q2(τ)− 1 = r(τ)P
(1.0)
N−1(τ)(τN − τ),

where r ∈ PN−2. Since P
(1,0)
N−1 is orthogonal to all polynomials in PN−2 with respect

to the weight function 1− τ = τN − τ , the integral of (9.4) again yields the identity∫ 1

−1

q2(τ) dτ = 2.

The remainder of the proof is identical to that of Proposition 9.1.
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Remark 9.1. The polynomial p(τ) = 1 + τ satisfies the conditions of Proposi-
tion 9.1 and Corollary 9.2, and p(1) = 2. Hence, the upper bound 2 is tight.

Remark 9.2. For the Radau abscissa with τ1 = −1 and τN < 1, the condition
p(−1) = 0 in the statement of Corollary 9.2 should be replaced by p(1) = 0.

10. Appendix 2: L2 approximation with a singular weight by Maday.
In (3.9) we integrate the error u−πNu in best H1(Ω) approximation using a singular
weight 1/(1− τ2). Here we relate this singular integral of the error to the error in the
H1

0(Ω) norm.

Proposition 10.1. If u ∈ H1
0(Ω), then

(10.1) ‖u− πNu‖0 ≤ N−1|u− πNu|H1(Ω), where ‖v‖0 =

(∫
Ω

v2(τ)

1− τ2
dτ

)1/2

,

and πN is the projection into P0
N relative to the the norm | · |H1(Ω).

Proof. Let 〈·, ·〉1 denote the standard H1
0(Ω) inner product defined by

〈u, v〉1 =

∫
Ω

u′(τ)v′(τ) dτ.

By the Legendre equation, the polynomials ψk(τ) := (1 − τ2)P ′k(τ) are orthogonal
with respect to the H1

0(Ω) inner product and

〈ψk, ψk〉1 =
〈(

1− τ2
)
P ′k,
(
1− τ2

)
P ′k
〉

1
= k2(k + 1)2〈Pk, Pk〉L2(Ω) =

2k2(k + 1)2

2k + 1
.

Consequently, {ψk : 1 ≤ k ≤ N−1} is an orthogonal basis for P0
N , and the orthogonal

projection of u into P0
N is given by

πNu =

N−1∑
i=1

ukψk, uk =
〈u, ψk〉1
〈ψk, ψk〉1

.

Let 〈·, ·〉0 denote the inner product on H1
0(Ω) defined by

〈u, v〉0 =

∫
Ω

u(τ)v(τ)

1− τ2
dτ.

By the Schwarz and Hardy inequalities, ‖u‖20 ≤ 2|u|H1(Ω)‖u‖L2(Ω). By the Legendre
equation, the ψk are also orthogonal in the 〈·, ·〉0 inner product and

〈ψk, ψk〉0 =
〈(

1− τ2
)
P ′k,
(
1− τ2

)
P ′k
〉

0
=
〈(

1− τ2
)
P ′k, P

′
k

〉
L2(Ω)

= k(k + 1)〈Pk, Pk〉L2(Ω) =
2k(k + 1)

2k + 1
.

Due to orthogonality, we have

‖u− πNu‖20 =
∑
k≥N

u2
k〈ψk, ψk〉0 =

∑
k≥N

(
2k(k + 1)

2k + 1

)
u2
k,

|u− πNu|2H1(Ω) =
∑
k≥N

u2
k〈ψk, ψk〉1 =

∑
k≥N

(
2k2(k + 1)2

2k + 1

)
u2
k.

Comparing these norms, we see that (10.1) holds.
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abweichen, Math. Ann., 77 (1916), pp. 185–191.

[35] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer, New York, 2006.
[36] M. A. Patterson, W. W. Hager, and A. V. Rao, A ph mesh refinement method for optimal

control, Optim. Control Appl. Meth., 36 (2015), pp. 398–421.
[37] G. W. Reddien, Collocation at Gauss points as a discretization in optimal control, SIAM J.

Control Optim., 17 (1979), pp. 298–306.
[38] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 3rd ed., Springer, New York,

2002.
[39] P. Williams, Jacobi pseudospectral method for solving optimal control problems, J. Guid.

Control Dyn., 27 (2004), pp. 293–297.


	Introduction
	Abstract setting
	Interpolation error in H1
	Analysis of the residual
	Invertibility of linearized dynamics
	Invertibility of F - T* and Lipschitz continuity of the inverse
	Numerical experiments
	Conclusions
	Appendix 1: Proof of (P1)
	Appendix 2: L2 approximation with a singular weight by Maday
	References

