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where �tf is the mean of the observed values of tf. Finally, the
coefficient of determination is calculated using

R2 � 1 −
S

Syy
(36)

The coefficient of determination for L̂f is calculated in a similar
manner to t̂f. All coefficients of determination are shown in Table 4,
where it is seen that R2 is close to unity in all cases.

F. Postoptimality Analysis

It is known from previous research (see [26] and [27]) that the
first-order optimality conditions of the nonlinear programming

a) GTO to GEO transfer b) LEO to GEO transfer

c) GTO to GEO transfer d) LEO to GEO transfer

e) GTO to GEO transfer f) LEO to GEO transfer

Fig. 12 Regression coefficients A, B, and C vs T∕m0.

Table 2 Regression coefficients for t̂f

Transfer a1 b1 B a2 b2

GTO to GEO −1.3849 −0.9766 −0.8745 0.0253 −1.0018
LEO to GEO −2.0361 −1.0005 −0.6757 0.0701 −1.0000
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problem arising from discretization of a continuous optimal control
problem via the LGR collocation method are a discrete approxi-
mation of the first-order calculus of variations optimality conditions
of the optimal control problem. Moreover, the costate of the optimal
control problem can be obtained via a simple linear transformation
of the Lagrange multipliers of the NLP arising from the LGR
collocation. In addition to the equivalence between the NLP and the
calculus of variations optimality conditions, it has also been proven
that the solution obtained using the variable-order (hp) LGR
collocation method converges exponentially (that is, the state,
control, and costate associated with the LGR collocation method all
converge) at the convergence rate given in [39]. Consequently, by
solving the NLP arising from the LGR collocation method on an
appropriate mesh, an accurate approximation to the solution of the
optimal control problem is obtained to both the primal variables (that
is, the state and control) and the dual variable (that is, the costate).
Therefore, by solving the variable-order LGR NLP on a sufficiently
accurate mesh, it is possible to verify the extremality of the solutions
without having to solve the Hamiltonian boundary-value problem
that arises from the calculus of variations. In other words, by
obtaining the solution to the variable-order LGR NLP on an appro-
priate mesh, the optimality of the solution can be verified without
having to resort to solving the optimal control problem using an
indirect method.

In this study, the proximity of the numerical solutions to the
true optimal solutions is investigated by examining various aspects
of the first-order calculus of variations conditions. In this analysis,
the first-order variational conditions are presented in terms of the
classical orbital elements (as opposed to the modified equinoctial
elements, which were used to solve the optimal control problem),
where the first-order optimality conditions are obtained in terms of
the classical orbital elements as follows. First, the discrete approxi-
mation of the costate in terms of the modified equinoctial elements
are obtained using the transformation of the NLP Lagrange multi-
pliers as described in [26] and [27] (where it is noted that GPOPS-II
performs this costate computation after the NLP is solved). Next, the
costate approximation in terms of the modified equinoctial elements
obtained from the LGR collocation method is transformed to the
costate in terms of classical orbital elements using the relationship
between the modified equinoctial element costate and the classical
orbital element costate as derived in the Appendix. Then, using the
fact that the costate is the sensitivity of the cost with respect to the
state along the optimal solution, the costate in terms of classical
orbital elements at the initial time is also approximated by solving the
optimal control problem at a perturbed initial orbital element and
taking the ratio of the change in cost to the change in the orbital
element of interest (for example, if it is interested in computing the
costate associatedwith the eccentricity, then the ratio of the change in
the cost to a perturbation in the eccentricity at the initial point is
computed).
The costates associated with the classical orbital elements of

interest were verified by resolving the problemwith a small perturba-
tion in the initial semimajor axis, initial eccentricity, and initial
inclination. For a perturbation in the initial semimajor axis, the
change in cost from the optimal cost is approximated as

Jδ ≈ J� �
�

∂J
∂a�L0�

�
�
�aδ�L0� − a��L0�� (37)

where Jδ and J� denote the cost on the perturbed and optimal
solutions, respectively. Therefore, the estimated semimajor axis
costate at L � L0 is approximated by

�
∂J

∂a�L0�

�
�
≈

Jδ − J�

aδ�L0� − a��L0�
� ΔJ

Δa
(38)

which is then compared to the derived costate value λ�a�L0�. For
a perturbation in the initial eccentricity or initial inclination, the
estimated costate value is calculated in a similar manner [that is,
replace the semimajor axis a with either the eccentricity e or
the inclination i in Eqs. (37) and (38)]. In this analysis, the
perturbations in the initial semimajor axis, initial eccentricity, and
initial inclination were Δa � 1000 m, Δe � 0.0001, and Δi �
0.00017453 rad (� 0.01 deg), respectively. Tables 5 and 6 show
the costate approximations �λ�a�L0�; λ�e�L0�; λ�i �L0�� alongside the
ratios of the cost to the perturbations, �ΔJ∕Δa;ΔJ∕Δe;ΔJ∕Δi�
in the orbital elements for the GTO to GEO case with
T∕m0 � 2.22 × 10−4 m · s−2 and for the LEO to GEO case with
T∕m0 � 4.00 × 10−4 m · s−2. For both cases, the LGR costate
approximations closely match the estimated change in cost due to
a perturbation in the classical orbital element of interest, and the
costate approximations are consistent with the expected behavior
(for example, increasing the initial semimajor axis for either orbit
transfer decreases the cost, whereas increasing the initial eccentricity
increases the cost). Moreover, it is seen that perturbing the initial
eccentricity significantly increases the cost for the GTO to GEO case
but increases the cost much less for the LEO toGEO case. Also, in all
cases, increasing the initial inclination increases the cost. Finally,
in all cases, the magnitude of cost sensitivity increases as the
specific impulse increases. This last result is consistent with the fact
that the efficiency of the engine increases as the specific impulse
increases.

a) GTO to GEO transfer

b) LEO to GEO transfer

Fig. 13 Lf∕�2π� vs tf .
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As a further verification of the close proximity of the numerical
solutions to the true optimal solution, the final columns of Tables 5
and 6 show the maximum absolute values of Hu ≡ ∂H∕∂u �
�Hur ;Huθ ;Huh� on L ∈ �L0; Lf �; that is, Tables 5 and 6 show

max
L∈�L0;Lf �

�jHur j; jHuθ j; jHuh j�

where H is computed as given in the Appendix using the costate
approximation obtained from the LGR collocation method as
described in [27]. Because the control lies on the interior of the
allowable control set for the problem studied in this paper, it is
known theoretically that Hu is zero along the optimal solution.

a) GTO to GEO transfer b) LEO to GEO transfer

c) GTO to GEO transfer d) LEO to GEO transfer

Fig. 14 Regression coefficientsD and E vs Isp.

Table 3 Regression coefficients for L̂f

Transfer a3 b3 c3 E

GTO to GEO 0.0949 −0.0020 1.4006 0.3110
LEO to GEO 3.0633 −0.0021 6.3653 −0.1633

Table 4 Coefficient of
determination R2 for t̂f and L̂f

Transfer t̂f L̂f

GTO to GEO 0.999950 0.999898
LEO to GEO 0.999984 0.999981

Table 5 GTO to GEO postoptimality results for T∕m0 � 2.50 × 10−4 m · s−2

Isp λ�a�t0� ΔJ∕Δa λ�e �t0� ΔJ∕Δe λ�i �t0� ΔJ∕Δi maxL∈�L0 ;Lf ��jHur j; jHuθ j; jHuh j�
500 −1.84 × 10−6 −1.84 × 10−6 77.78 77.81 17.45 17.47 2.65 × 10−9

1000 −2.31 × 10−6 −2.30 × 10−6 97.58 97.70 21.92 21.98 3.33 × 10−10

3000 −2.39 × 10−6 −2.39 × 10−6 108.74 108.69 24.45 24.47 2.20 × 10−10

5000 −2.75 × 10−6 −2.75 × 10−6 116.72 116.78 26.24 26.27 2.22 × 10−10
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Commensuratewith this knownvalue ofHu, Tables 5 and 6 show that
Hu is extremely small, further substantiating the close proximity of
the numerical solution to the true optimal solution.

V. Conclusions

The problem of high-accuracy low-thrust minimum-time Earth-
orbit transfers has been studied. The optimal orbital transfer problem
is posed as a constrained nonlinear optimal control problem. It is
solved using a variable-order Legendre–Gauss–Radau quadrature
orthogonal collocationmethod pairedwith a searchmethod that helps
the NLP solver determine the best locally optimal solution. A numer-
ical optimization study has been conducted to determine optimal
trajectories and controls for a range of initial thrust accelerations and
constant specific impulses. The key features of the solutions have
been identified, and relationships have been obtained that relate the
optimal transfer time to the optimal number of true longitude cycles
as a function of the initial thrust acceleration and specific impulse.
Finally, a postoptimality analysis has been performed that verifies the
optimality of the solutions that were obtained in this study.

Appendix: Relationship Between Costate in Modied
Equinoctial Elements and Classical Orbital Elements

In this Appendix, we derive expressions for the components of
the costate of the optimal control problem given Sec. II in terms of
the components of the costate in terms of the modified equinoctial
elements. First, the augmented HamiltonianH of the minimum-time
optimal control problem described in Sec. II is given in terms of the
differential equations in modified equinoctial elements as

H � λpGp � λfGf � λgGg � λhGh � λkGk

� λmGm � λtGt − μ�u2r � u2θ � u2h − 1� (A1)

where (λp, λf, λg, λh, λk, λm, λt) is the costate associated with the
differential equations of Eqs. (3) and (4), and μ is the Lagrangemulti-
plier associated with the path constraint of Eq. (17). The Hamiltonian
can be expressed equivalently in terms of the classical orbital ele-
ments as

H � λaGa � λeGe � λiGi � λΩGΩ � λωGω � λmGm � λtGt
(A2)

where (Ga, Ge, Gi, GΩ, Gω) define the right-hand sides of those
components of the equations of motion given in Eqs. (3) and (4) that
correspond to the dynamics for the orbital elements a, e, i,Ω, and ω;
that is,

da

dL
� Ga

de

dL
� Ge

di

dL
� Gi

dΩ
dL
� GΩ

dω

dL
� Gω (A3)

Because the components of the costates λm and λt are the same using
either modified equinoctial elements or orbital elements, and the
control is the same in both formulations, the Hamiltonian given in
either Eq. (A1) or (A2) can be replaced with the reduced Hamiltonian

Hr � λpGp � λfGf � λgGg � λhGh � λkGk

� λaGa � λeGe � λiGi � λΩGΩ � λωGω (A4)

Next, the relationship between themodified equinoctial elements and
the classical orbital elements is given as

a � a�p; f; g� � p

1 − f2 − g2

e � e�f; g� �
�����������������
f2 � g2

q

i � i�h; k� � tan−1
�
2

����������������
h2 � k2
p

1 − k2 − h2

�

Ω � Ω�h; k� � tan−1
�
k

h

�

ω � ω�f; g; h; k� � tan−1
�
gh − fk
fh� gk

�
(A5)

The expressions for da∕dL, de∕dL, di∕dL, dΩ∕dL, and dω∕dL are
then given in terms of modified equinoctial elements as

da

dL
� ∂a

∂p
dp

dL
� ∂a

∂f
df

dL
� ∂a

∂g
dg

dL
� ∂a

∂p
Gp �

∂a
∂f
Gf �

∂a
∂g
Gg

de

dL
� ∂e

∂f
df

dL
� ∂e

∂g
dg

dL
� ∂e

∂f
Gf �

∂e
∂g
Gg

di

dL
� ∂i

∂h
dh

dL
� ∂i

∂k
dk

dL
� ∂i

∂h
Gh �

∂i
∂k
Gk

dΩ
dL
� ∂Ω

∂h
dh

dL
� ∂Ω

∂k
dk

dL
� ∂Ω

∂h
Gh �

∂Ω
∂k
Gk

dω

dL
� ∂ω

∂f
df

dL
� ∂ω

∂g
dg

dL
� ∂ω

∂h
dh

dL
� ∂ω

∂k
dk

dL

� ∂ω
∂f
Gf �

∂ω
∂g
Gg �

∂ω
∂h
Gh �

∂ω
∂k
Gk (A6)

Substituting Eq. (A6) into Eq. (A4), the reduced Hamiltonian can be
expressed as

Hr� λa

�
∂a
∂p
Gp�

∂a
∂f
Gf�

∂a
∂g
Gg

�
� λe

�
∂e
∂f
Gf�

∂e
∂g
Gg

�

� λi

�
∂Ω
∂h
Gh�

∂Ω
∂k
Gk

�

� λΩ

�
∂Ω
∂h
Gh�

∂Ω
∂k
Gk

�
� λω

�
∂ω
∂f
Gf�

∂ω
∂g
Gg�

∂ω
∂h
Gh�

∂ω
∂k
Gk

�

(A7)

and rearranged to yield

Table 6 LEO to GEO postoptimality results for T∕m0 � 4.00 × 10−4 m · s−2

Isp λ�a�t0� ΔJ∕Δa λ�e �t0� ΔJ∕Δe λ�i �t0� ΔJ∕Δi maxL∈�L0 ;Lf ��jHur j; jHuθ j; jHuh j�
500 −4.73 × 10−6 −4.72 × 10−6 0.14 0.14 36.75 36.75 1.53 × 10−10

1000 −8.56 × 10−6 −8.53 × 10−6 0.40 0.40 66.57 66.58 1.67 × 10−10

3000 −1.30 × 10−5 −1.29 × 10−5 0.59 0.59 99.20 99.22 1.42 × 10−10

5000 −1.38 × 10−5 −1.37 × 10−5 0.63 0.57 107.06 107.04 2.08 × 10−10
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Hr �
�
λa

∂a
∂p

�
Gp �

�
λa

∂a
∂f
� λe

∂e
∂f
� λω

∂ω
∂f

�
Gf

�
�
λa

∂a
∂g
� λe

∂e
∂g
� λω

∂ω
∂g

�
Gg

�
�
λi

∂i
∂h
� λΩ

∂Ω
∂h
� λω

∂ω
∂h

�
Gh �

�
λi
∂i
∂k
� λΩ

∂Ω
∂k
� λω

∂ω
∂k

�
Gk

� λpGp � λfGf � λgGg � λhGh � λkGk (A8)

Equating terms in Eq. (A8) leads to the following systemof five linear
equations that relate (λa, λe, λi, λΩ, λω) to λp, λf, λg, λh, λk):

2
66664

λp
λf
λg
λh
λk

3
77775 �

2
666664

∂a
∂p 0 0 0 0
∂a
∂f

∂e
∂f 0 0 ∂ω

∂f
∂a
∂g

∂e
∂g 0 0 ∂ω

∂g
0 0 ∂i

∂h
∂Ω
∂h

∂ω
∂h

0 0 ∂i
∂k

∂Ω
∂k

∂ω
∂k

3
777775

2
66664

λa
λe
λi
λΩ
λω

3
77775 (A9)

Assuming that the system matrix

2
666664

∂a
∂p 0 0 0 0
∂a
∂f

∂e
∂f 0 0 ∂ω

∂f
∂a
∂g

∂e
∂g 0 0 ∂ω

∂g
0 0 ∂i

∂h
∂Ω
∂h

∂ω
∂h

0 0 ∂i
∂k

∂Ω
∂k

∂ω
∂k

3
777775

is invertible, Eq. (A9) can be solved to obtain (λa, λe, λi, λΩ, λω).
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