Minimum-Time Trajectory Optimization of Low-Thrust Earth-Orbit Transfers with Eclipsing

Kathryn F. Graham and Anil V. Rao

University of Florida, Gainesville, Florida 32611-6250

DOI: 10.2514/1.A33416

The problem of determining high-accuracy minimum-time Earth-orbit transfers using low-thrust propulsion with eclipsing is considered. The orbit transfer problem is posed as a multiple-phase optimal control problem where the spacecraft can thrust only during phases where it has line of sight to the sun. Event constraints, based on the geometry of a penumbra shadow region, are enforced between the phases and determine the amount of time spent in an eclipse. An initial guess generation method is developed that constructs a useful guess by solving a series of single-phase optimal control problems and analyzing the resulting trajectory to approximate where the spacecraft enters and exits the Earth’s shadow. The single-phase and multiple-phase optimal control problems are solved using an hp adaptive Legendre–Gauss–Radau orthogonal collocation method. To demonstrate the effectiveness of the approach developed in this research, optimal transfer trajectories are computed for two Earth-orbit transfers found in the literature. In addition to the two comparison cases studied, a separate Earth-orbit transfer is examined, and solutions are presented for four different departure dates.

Nomenclature

\(a \) = semimajor axis, m
\(e \) = eccentricity
\(f \) = second modified equinoctial element
\(g \) = third modified equinoctial element
\(g_e \) = sea-level acceleration due to Earth gravity, \(\text{m/s}^2 \)
\(h \) = second modified equinoctial element
\(i \) = inclination, deg or rad
\((i_x, i_y, i_z) \) = rotating radial coordinate system
\(J_2 \) = second zonal harmonic
\(J_3 \) = third zonal harmonic
\(J_4 \) = fourth zonal harmonic
\(k \) = fifth modified equinoctial element
\(L \) = sixth modified equinoctial element (true longitude), rad or deg
\(m \) = mass, kg
\(n \) = mean motion
\(p \) = input power, kW
\(P_k \) = Legendre polynomial of degree \(k \)
\(p \) = first modified equinoctial element (semiparameter), m
\(R_e \) = radius of the Earth, m
\(R_s \) = radius of the sun, m
\(T \) = thrust, N
\(t \) = time, s or day
\(u \) = control direction
\(u_r \) = radial component of control
\(u_\theta \) = tangential component of control
\(u_\phi \) = normal component of control
\(\Delta \) = spacecraft specific force, \(\text{m} \cdot \text{s}^{-2} \)
\(\eta \) = thruster efficiency, %
\(\mu_e \) = Earth gravitational parameter, \(\text{m}^3 \cdot \text{s}^{-2} \)
\(\mu_s \) = sun gravitational parameter, \(\text{m}^3 \cdot \text{s}^{-2} \)
\(\nu \) = true anomaly, deg or rad
\(\Omega \) = longitude of ascending node, deg or rad
\(\omega \) = argument of periapsis, deg or rad

I. Introduction

The use of low-thrust propulsion has been studied extensively for orbital rendezvous, orbit maintenance, orbit transfer, and interplanetary space mission applications. Although the efficiency of low-thrust propulsion is highly appealing for a variety of applications, the corresponding problem is computationally challenging to solve. For instance, when using low-thrust propulsion to perform Earth-orbit transfers, the high specific impulse combined with a small specific force leads to very long transfer times. In addition, the trajectory design problem is especially complicated if the initial and terminal orbits are widely spaced because a large number of orbital revolutions are necessary to complete the transfer. Furthermore, if the low-thrust propulsion system is powered by solar panels, thrust is not available when the spacecraft passes through the Earth’s shadow, and therefore the trajectory design problem must be segmented into a number of phases. The result is a multiple-phase optimal control problem that is very challenging to solve.

Low-thrust trajectory optimization of Earth-orbit transfers has been studied over the past several decades. Alfano and Thorne [1] considered the problem of minimum-fuel power-limited transfers between coplanar elliptic orbits. More recently, in [3], an orbital averaging approach was developed in conjunction with hybrid control formulations to solve low Earth orbit (LEO) to geostationary orbit (GEO) and geostationary transfer orbit (GTO) transfers. Next, Scheel and Conway [4] solved a 100-revolution LEO to GEO coplanar transfer using direct collocation paired with a Runge–Kutta parallel-shooting scheme, whereas Haberkorn et al. [5] combined a single shooting method with a homotopic approach to solve a minimum-fuel transfer from a low, elliptic, and inclined orbit to GEO. To increase accuracy over orbital averaging techniques, Betts [6] used sequential quadratic programming to solve a minimum-fuel,
low-thrust, near-polar Earth-orbit transfer with over 578 revolutions. In [7], an anti-aliasing method using direction collocation was developed to obtain solutions to simple low-thrust trajectory optimization problems. Finally, Graham and Rao [8] addressed minimum-time transfers using direct collocation for a range of initial thrust accelerations and constant specific impulse values.

Although many authors have proposed techniques for solving low-thrust trajectory optimization problems, only a few have addressed the problem assuming a solar-powered propulsion system. Using solar electric propulsion leads to a fundamentally different and more complex optimal control problem than the well-studied continuous-thrust case because Earth-shadow regions must be included in the physical model. Kluiver and Oleson [9], Gao [10], and Yang [11] determined Earth-shadow entry and exit points by finding the intersection between the osculating elliptical orbit and a cylindrical shadow model [12]. Using control parameterization and orbital averaging coupled with a direct optimization technique, Kluiver and Oleson [9], Gao [10], and Yang [11] solved several Earth-orbit transfers. Cylindrical shadow models and orbital averaging techniques are also used in [13,14], where in [14] a shooting algorithm is employed to solve neighboring problems developed to avoid the discontinuous behavior associated with the spacecraft entering and exiting a shadow region. Furthermore, Kechichian addressed low-thrust zero-eccentricity-constrained orbit raising in a circular orbit [15], analyzed low-thrust tangential thrusting along small-to-moderate eccentricity orbits [16], and examined low-thrust inclination changes in a near-circular orbit using a cylindrical Earth-shadow model [17]. More recently, Betts [18] formulated a direct optimization approach that solves a series of large-scale multiple-phase optimal control problems and uses penumbra geometry to determine the shadow entrance and exit locations.

The goal of this research is to develop an approach for computing high-accuracy solutions to low-thrust orbit transfers using solar electric propulsion. The problem is formulated as a multiple-phase optimal control problem that consists of only burn phases. An intelligent initial guess is constructed by solving a series of single-phase optimal control problems and analyzing the solutions to determine approximate shadow entrance and exit locations. The corresponding multiple-phase optimal control problem is then solved using an hp adaptive Gaussian quadrature orthogonal collocation method [19–26] with the software GPOPS–II as described in [26]. Using the approach of this paper, solutions to the multiple-phase optimal control problem are obtained without replacing the equations of motion with averaged approximations over each orbital revolution (such as when orbital averaging is employed). The multiple-phase optimal control problem consists of thrust phases and event constraints that account for changes in the orbit from the entrance to the exit of each shadow region, where the shadow regions are determined from the geometry of the problem. By employing event constraints in this manner, the change in the orbit during a non-thrusting shadow segment can be determined without having to model the shadow segment as its own phase, thus eliminating shadow phases from the optimal control problem. The approach developed in this paper is applied to two Earth-orbit transfers found in the literature as well as an Earth-orbit transfer that has not previously been studied in detail.

This paper is organized as follows. In Sec. II, the problem formulation is provided. In particular, Sec. II provides the differential equations that describe the motion of the spacecraft, the boundary conditions, the path constraints, the definition of a shadow region, and a description of the resulting multiple-phase low-thrust orbit transfer optimal control problem. In Sec. III, the key results are provided along with a discussion of the results. Finally, in Sec. IV, conclusions on this research are provided.

II. Problem Description

Consider the problem of transferring a spacecraft from an initial Earth-orbit to a final Earth-orbit using solar electric propulsion. The objective is to determine the minimum-time trajectory and control inputs that transfer the spacecraft from the specified initial orbit to the specified terminal orbit. In the remainder of this section, the details of the low-thrust orbit transfer optimal control problem that employs a model for solar electric propulsion are described.

A. Equations of Motion

The dynamics of the spacecraft, modeled as a point mass, are described using modified equinoctial elements \((p, f, g, h, k, L)\) (see [27]), where \(p\) is the semiparameter, \(f\) and \(g\) are elements that describe the eccentricity, \(h\) and \(k\) are elements that describe the inclination, and \(L\) is the true longitude. The state of the spacecraft is then given as \((p, f, g, h, k, L, m)\), where \(m\) is the vehicle mass. The control is the thrust direction \(u\), where \(u\) is expressed in rotating radial coordinates as \(u = (u_r, u_{\theta}, u_z)\). A fourth-order oblate gravity model is used, and the thrust magnitude is assumed constant when the spacecraft is not in an eclipse. The differential equations of motion of the spacecraft are then given as

\[
\frac{dp}{dt} = \frac{\sqrt{p^2 - q^2} \Delta p}{\mu_p} \equiv F_p,
\]

\[
\frac{df}{dt} = \frac{p}{\mu_p} \left(\sin L \Delta p + \frac{1}{q} ((q + 1) \cos L + f) \Delta g \right.
\]

\[
- \frac{g}{q} (h \sin L - k \cos L) \Delta h \equiv F_f,
\]

\[
\frac{dg}{dt} = \frac{p}{\mu_p} \left(-\cos L \Delta p + \frac{1}{q} ((q + 1) \sin L + g) \Delta g \right.
\]

\[
+ \frac{f}{q} (h \sin L - k \cos L) \Delta h \equiv F_g,
\]

\[
\frac{dh}{dt} = \frac{\sqrt{p^2 - q^2} \cos L}{\mu_p} \Delta h \equiv F_h,
\]

\[
\frac{dk}{dt} = \frac{p \Delta s \sin L}{\mu_p} \Delta k \equiv F_k,
\]

\[
\frac{dL}{dt} = \frac{p}{\mu_p} (h \sin L - k \cos L) \Delta h + \sqrt{\mu_p \Delta s} \frac{1}{p} \equiv F_L,
\]

\[
\frac{dm}{dt} = - \frac{T}{g \mu_p} \equiv F_m
\]

(1)

where

\[q = 1 + f \cos L + g \sin L, \]

\[r = p/q, \]

\[a^2 = h^2 - k^2, \]

\[s^2 = 1 + \sqrt{h^2 + k^2} \]

(2)

In this research, the true longitude is used as the independent variable instead of time. Denoting differentiation with respect to true longitude by \((\cdot)\)’, the differential equation for \(t\) is given as

\[
\frac{dt}{dL} = \frac{1}{F_L} = F_L^{-1} \equiv G_l
\]

(3)

whereas the remaining six differential equations for \((p, f, g, h, k, m)\) that describe the dynamics of the spacecraft are given as

\[
(p, f, g, h, k, m)' = F_L^{-1} (F_p, F_f, F_g, F_h, F_k, F_m)
\]

\[
\equiv (G_p, G_f, G_g, G_h, G_k, G_m)
\]

(4)

Next, the spacecraft acceleration \(\Delta = (\Delta p, \Delta q, \Delta h)\) is modeled as

\[
\Delta = \Delta g + \Delta_T
\]

(5)

where \(\Delta g\) is the gravitational acceleration due to the oblateness of the Earth, and \(\Delta_T\) is the thrust specific force. The acceleration due to Earth oblateness is expressed in rotating radial coordinates as

\[
\Delta g = Q^T \delta g
\]

(6)
Finally, the physical constants used in this study are given in Table 1.

Next, the thrust specific force is given as
\[
 p(L_0) = a_0(1 - e_0^2), \quad h(L_0) = \tan(i_0/2) \sin \Omega_0
\]
\[
 f(L_0) = e_0 \cos(a_0 + \Omega_0), \quad k(L_0) = \tan(i_0/2) \cos \Omega_0
\]
\[
g(L_0) = e_0 \sin(a_0 + \Omega_0), \quad L_0 = \Omega_0 + a_0 + \nu_0
\]

The terminal orbit used in this research is specified in classical orbital elements as
\[
 a(L_f) = a_f, \quad \Omega(L_f) = \text{Free},
\]
\[
 e(L_f) = e_f, \quad \omega(L_f) = \text{Free},
\]
\[
i(L_f) = i_f, \quad \nu(L_f) = \text{Free}
\]

Equation (16) can be expressed equivalently in terms of the modified equinoctial elements as
\[
 p(L_f) = a_f(1 - e_f^2),
\]
\[
 (h^2(L_f) + k^2(L_f))^{1/2} = e_f,
\]
\[
 (h^2(L_f) + k^2(L_f))^{1/2} = \tan(i_f/2)
\]

Finally, during the transfer, the thrust direction must be a vector of unit length. Thus, the equality path constraint
\[
 \|u\|_2 = u_1^2 + u_3^2 + u_5^2 = 1
\]

is enforced throughout all phases of the transfer where the spacecraft is allowed to thrust.

C. Model for Solar Electric Propulsion

In this section, a model is described for a spacecraft that uses solar electric propulsion. In this model, it is assumed that the spacecraft applies maximum thrust when it has line of sight to the sun and applies zero thrust when line of sight to the sun is lost. The model consists of two parts. In the first part of the model, a shadow region (an eclipse), that is, a segment of the solution where line of sight to the sun is lost, is described. In the second part of the model, the conditions that define a start and a terminus of a shadow region are described along with the conditions that define the change in the location of the spacecraft as it moves from an entrance to an exit of a shadow region.

1. Definition of a Shadow Region

By calculating the position of the sun, \(s\), throughout the transfer, the penumbra and umbra shadow regions can be defined. Low-precision formulas were employed to efficiently determine the coordinates of the sun in equatorial rectangular coordinates \([29]\). (The low-precision formulas give the coordinates of the sun to a precision of 1/100 deg and the equation of time to a precision of 3.5 s between 1950 and 2050.) If a solar-powered spacecraft travels through a penumbra region, the propulsion system will receive limited solar energy, whereas passage through an umbra region will result in a complete loss of solar energy.

In a manner similar to \([30]\), the celestial bodies are assumed to be spherical, which generates shadow regions that are conical projections. In this approach, only a penumbra shadow region is considered, and the thrust of the spacecraft is assumed to be zero when traveling through the shadow region. The penumbra cone geometry is shown in Fig. 1, where the distance between point \(P\) and the center of the Earth is defined as
\[
 X_p = \frac{R_e d_p}{R_e + R_s}
\]
and the angle \(\alpha_p \) is defined as

\[
\alpha_p = \sin^{-1} \left(\frac{R_e}{x_p} \right)
\]

(20)

The projected spacecraft location is then used to locate the penumbra cone terminators. Figure 2 shows the projected spacecraft location geometry, where the location of the spacecraft, \(r \), is defined as

\[
r = \left[\frac{\mu}{2} \left(\cos L + \alpha^2 \cos L + 2hk \sin L \right) \right]
\]

\[
\frac{\mu}{2} \left(\sin L - \alpha^2 \sin L + 2hk \cos L \right) \frac{\mu}{2} \left(h \sin L - k \cos L \right)
\]

(21)

The solar unit vector

\[
\hat{s} = \frac{s}{\|s\|}
\]

(22)

is used to determine the projection of the spacecraft along \(\hat{s} \), which is defined as

\[
r_p = (r \cdot \hat{s}) \hat{s}
\]

(23)

The distance between the center of the penumbra cone and the spacecraft at the projection point is defined as

\[
\delta = r - r_p
\]

(24)

and the distance between the center of the penumbra cone and the penumbra terminator point at the projected spacecraft location is defined as

\[
\kappa = (\chi_p + \|r_p\|) \tan \alpha_p
\]

(25)

A comparison of the distance \(\kappa \) with the magnitude of the vector \(\delta \) determines the shadow terminator points as described next.

1) Shadow terminator points are only feasible if \(r \cdot \hat{s} < 0 \). However, if \(\|\delta\| \geq \kappa \), the spacecraft is still in sunlight.

2) Penumbra terminator points occur when \(\|\delta\| = \kappa \), and the spacecraft is in the penumbra cone if \(\|\delta\| < \kappa \).

2. Event Constraints Defining Entrance and Exit of a Shadow Region

The following event constraints define the entrance and exit of a shadow region. First, because the duration of coasting flight during an eclipse is less than one-third of an orbital period, it is assumed during an eclipse that the spacecraft is under the influence of central body gravity (that is, Keplerian motion). As a result, the first five modified equinoctial elements \((p, f, g, h, \hat{s}) \) are constant during an eclipse, and the only modified equinoctial element that changes is the true longitude \(L \). Next, let \(\Delta L^{(i)} \) be optimization parameters that define the change in true longitude during the \(i \)th eclipse (where \(r = 1, \ldots, R - 1 \), and \(R \) is the number of phases). Because the duration of the eclipse is less than one-third of an orbital period, the following constraint is placed on \(\Delta L^{(i)} \):

\[
0 < \Delta L^{(i)} \leq \pi
\]

(26)

The relationship between the longitude at the start and terminus of the \(r \)th eclipse is then given as

\[
L^{(r+1)}_0 - L^{(r+1)}_f + \Delta L^{(r+1)} = 0, \quad (r = 1, \ldots, R - 1)
\]

(27)

The duration of the \(r \)th eclipse, \(d \), is then obtained by integrating Eq. (3) as

\[
I^{(r+1)}(L^{(r+1)}_0) - I^{(r+1)}(L^{(r)}_f) + \int_{L^{(r)}_f}^{L^{(r+1)}_0} G_s \, dL = 0
\]

(28)

where \(G_s \) is defined in Eq. (3). Recalling that an eclipse occurs only when \(r \cdot \hat{s} < 0 \), the endpoints of the initial and all intermediate phases must satisfy

\[
r(L^{(r)}_f) \cdot \hat{s} < 0, \quad (r = 1, \ldots, R - 1)
\]

(29)

Furthermore, an eclipse terminator point can only occur when \(\|\delta\| = \kappa \), as dictated by the geometry of the penumbra cone. Therefore, the endpoints of the initial phase and all intermediate phases must satisfy

\[
\|\delta(L^{(r)}_f)\| - \kappa = 0, \quad (r = 1, \ldots, R - 1)
\]

(30)
whereas the initial points of all the intermediate phases and terminal phase must satisfy

\[\delta(L_{0}^{r(1)}) = 0, \quad (r = 1, \ldots, R - 1) \]

Finally, because the spacecraft is assumed to be under the influence of central body gravitation during an eclipse, the following constraints are imposed on the state components \(p, f, g, h, k, m \) at the start and terminus of an eclipse:

\[
\begin{align*}
p^{(r+1)}(L_{0}^{r+1}) - p^{(r)}(L_{0}^{r}) &= 0, \\
f^{(r+1)}(L_{0}^{r+1}) - f^{(r)}(L_{0}^{r}) &= 0, \\
g^{(r+1)}(L_{0}^{r+1}) - g^{(r)}(L_{0}^{r}) &= 0, \\
h^{(r+1)}(L_{0}^{r+1}) - h^{(r)}(L_{0}^{r}) &= 0, \\
k^{(r+1)}(L_{0}^{r+1}) - k^{(r)}(L_{0}^{r}) &= 0, \\
m^{(r+1)}(L_{0}^{r+1}) - m^{(r)}(L_{0}^{r}) &= 0
\end{align*}
\]

(32)

It is emphasized again that Keplerian motion during an eclipse is assumed because the duration of an eclipse is only a small fraction of an orbital period.

D. Multiple-Phase Optimal Control Problem

The aforementioned Earth-shadow model leads naturally to decomposing the spacecraft motion into phases. Using this aforementioned approach, the structure of the multiple-phase optimal control problem is as follows. The first phase starts with the spacecraft in its initial orbit and terminates when the spacecraft reaches the start of the first shadow region. Each intermediate phase of the multiple-phase optimal control problem corresponds to a segment of the trajectory that begins at an exit point of a shadow and ends at the next shadow entry point. The final phase corresponds to the trajectory segment that begins at the last shadow exit point and ends when desired terminal orbit is obtained. The multiple-phase optimal control problem arising from the aforementioned low-thrust orbital transfer with eclipsing constraints is then given as follows. Determine the trajectory \((p(L), f(L), g(L), h(L), k(L), m(L), t(L)) \) and the control inputs \((u_{i}(L), u_{o}(L), u_{s}(L)) \) that minimize the cost functional

\[J = at_{f} \]

subject to the dynamic constraints of Eqs. (3) and (4), the initial conditions of Eq. (15), the terminal conditions of Eq. (17), the path constraint of Eq. (18), the parameter constraints of Eq. (26), and the event constraints of Eqs. (27–32). (Note that \(a = 86,400 \) is the conversion factor from units of seconds to units of days.)

E. Initial Guess Generation

A single-phase optimal control problem without eclipse constraints (continuous thrust) is solved first to generate a nominal trajectory using the approach described in [8]. The single-phase optimal control problem is stated as follows. Determine the trajectory \((p(L), f(L), g(L), h(L), k(L), m(L), t(L)) \) and the control inputs \((u_{i}(L), u_{o}(L), u_{s}(L)) \) that minimize the cost functional

\[J = at_{f} \]

subject to the dynamic constraints of Eqs. (3) and (4), the initial conditions of Eq. (15), the terminal conditions of Eq. (17), and the path constraint of Eq. (18). The nominal trajectory is then analyzed to determine the number of times the spacecraft enters the Earth’s shadow, which will vary depending on the launch date chosen. The trajectory is initially analyzed to locate the first shadow exit point. The equations of motion are then propagated until a shadow exit point is obtained. The remaining trajectory is adjusted, and the single-phase optimal control problem is solved again using initial conditions that correspond to the shadow exit point found by propagating the equations of motion. The resulting nominal trajectory is once again analyzed as before until another shadow entry point is obtained or the desired terminal condition is satisfied. For example, consider an orbit transfer where a spacecraft travels through the Earth’s shadow only one time. Analysis of the nominal trajectory would lead to a two-

Table 2
Orbit types

<table>
<thead>
<tr>
<th>Orbit</th>
<th>(a, R)</th>
<th>(e)</th>
<th>(i, \deg)</th>
<th>(\Omega, \deg)</th>
<th>(\omega, \deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTO-1</td>
<td>3.8200</td>
<td>0.7310</td>
<td>27</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>GTO-2</td>
<td>3.8200</td>
<td>0.7306</td>
<td>28.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SSTO</td>
<td>8.0785</td>
<td>0.8705</td>
<td>22.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GEO</td>
<td>6.6107</td>
<td>0</td>
<td>0</td>
<td>Free</td>
<td>Free</td>
</tr>
</tbody>
</table>

Table 3
Mission characteristics

<table>
<thead>
<tr>
<th>Case</th>
<th>(m_{0}, \text{kg})</th>
<th>(L_{sp}, \text{s})</th>
<th>(P, \text{kW})</th>
<th>(\eta, %)</th>
<th>Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>450</td>
<td>3300</td>
<td>5</td>
<td>65</td>
<td>GTO-1 to GEO</td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
<td>1800</td>
<td>5</td>
<td>55</td>
<td>GTO-2 to GEO</td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>3300</td>
<td>10</td>
<td>65</td>
<td>SSTO to GEO</td>
</tr>
</tbody>
</table>

Fig. 3 Trajectory for the GTO-1 to GEO transfer.
phase problem. The first phase will solve for the trajectory from the
initial condition to the entry point of the shadow region, and the
second phase will solve for the trajectory from the exit point of the
shadow region to the desired terminal condition.

III. Results and Discussion

The multiple-phase low-thrust optimal control orbit transfer
problem described in Sec. II was solved using the MATLAB optimal
control software GPOPS-II [26] with the open-source nonlinear
programming problem (NLP) solver IPOPT [31]. GPOPS-II
employs an h_p-adaptive Legendre–Gauss–Radau collocation method
[23,24,32,33], where the optimal control problem is transcribed into a
large sparse NLP, and the NLP is solved on successive meshes until a
desired accuracy is achieved. In this research, the ph mesh refinement
method described in [25] is employed with a mesh refinement accuracy
tolerance of 10^{-7}, and the IPOPT NLP solver tolerance was also set
to 10^{-7}. All first and second derivatives required by IPOPT were
approximated using the sparse finite difference derivative approxi-
mation method described in [26,32].

To demonstrate the approach, the orbit transfers summarized in
Table 2 were computed using the mission characteristics shown in
Table 3. Cases 1 and 2 were chosen to demonstrate the effectiveness
of the approach of this paper against results that have already
appeared in the open literature. Case 1 is a transfer from geostationary
transfer orbit (GTO) to geostationary orbit (GEO) taken from [9,10],
whereas case 2 is a slightly different GTO to GEO transfer taken from
[34]. Finally, case 3 is a supersynchronous transfer orbit (SSTO) to
GEO transfer, where the SSTO parameters are characteristic of an
orbit insertion via a Falcon 9 launch vehicle. Case 1 has a departure 7
date of 1 January 2000 at 0000 hrs Universal Time (UT), and case 2
has a departure date of 22 March 2000 at 0000 hrs UT. To be
consistent, cases 1 and 2 were both solved with the J_2 gravity perturbation only, whereas case 3 was solved with J_2 through J_4
gravity perturbations. Moreover, the following departure dates were
considered for case 3: vernal equinox (March 20 at 0350 hrs UT),
summer solstice (June 20 at 2144 hrs UT), autumnal equinox
(September 22 at 1331 hrs UT), and winter solstice (December 21 at
1002 hrs UT) for the year 2020.

Next, for cases 2 and 3, the behavior of the optimal control will be
explained by analyzing the following three differential equations that
describe the evolution of the semimajor axis, eccentricity, and
inclination [35]:

![Figure 4: Trajectory for the GTO-2 to GEO transfer.](image)

![Figure 5: a, e, and i vs t for the GTO-2 to GEO transfer.](image)
Fig. 6 u vs t for the GTO-2 to GEO transfer.

Fig. 7 u, i, and $\cos(\nu + \omega)$ vs $\nu/(2\pi)$ during the first few orbital revolutions of the GTO-2 to GEO transfer.
\[\frac{da}{dt} = \frac{2e \sin \nu}{nx} \dot{u}_r + \frac{2ax}{nr} u_\theta \]
(35)

\[\frac{dr}{dt} = \frac{x \sin \nu}{na} \dot{u}_r + \frac{x}{na^2} \left(\frac{a^2 x^2}{r} - r \right) u_\theta \]
(36)

\[\frac{di}{dt} = \frac{r \cos(\nu + \omega)}{na^2 x} u_h \]
(37)

where \(n \) is the mean motion, and \(x = \sqrt{1 - e^2} \). It is seen from Eq. (35) that the semimajor axis will increase most rapidly when the control points either in the positive \(u_\theta \) direction, radially outward near \(\nu = \pi/2 \) (halfway between periapsis and apoapsis), or radially inward near \(\nu = 3\pi/2 \) (halfway between apoapsis and periapsis). The cyclic behavior of \(u_r \) as it relates to Eq. (35) increases apoapsis and decreases periapsis when \(\nu \in [0, \pi] \) and decreases apoapsis and increases periapsis when \(\nu = [\pi, 2\pi] \). Thrusting radially in this manner increases both the semimajor axis and eccentricity. Furthermore, thrusting radially in this manner increases both the semimajor axis and eccentricity. On the other hand, from Eq. (36), the eccentricity will decrease most rapidly when the control points either in the positive \(u_\theta \) direction, radially inward near \(\nu = \pi/2 \), or radially outward near \(\nu = 3\pi/2 \).

The cyclic behavior of \(u_r \) as it relates to Eq. (36) decreases apoapsis and increases periapsis when \(\nu \in [0, \pi] \) and increases apoapsis and decreases periapsis when \(\nu \in [\pi, 2\pi] \). Thrusting radially in this manner decreases both the semimajor axis and eccentricity. Finally, it is seen from Eq. (37) that \(di/dt \) is most negative when \(\cos(\nu + \omega) u_h \) is most negative. Therefore, when \(\cos(\nu + \omega) u_h \) is negative, the inclination will decrease.

A. Case 1: Geostationary Transfer Orbit 1 to Geostationary Orbit

Transfer Results

Figure 3 shows the optimal GTO-1 to GEO trajectory in Earth-centered inertial (ECI) Cartesian coordinates \(x; y; z \), where the Earth-shadow regions are indicated by the gray segments. The multiple-phase optimal control problem contains 89 phases. The Earth-shadow regions appear near periapsis, and consequently the spacecraft is in the Earth’s shadow at the start of the transfer. Furthermore, the shadow regions are present throughout the entire transfer and shift away from periapsis toward the ascending node. The spacecraft spends a total of approximately two days in the Earth’s shadow. The optimal solution has a transfer time of 65.9 days and a final mass of 415.71 kg, and it completes approximately 89 orbital revolutions.

![Fig. 8](image1)

\(u \) vs. \(\nu/(2\pi) \) when \(u_r \approx 0 \) during the GTO-2 to GEO transfer.

![Fig. 9](image2)

\(i \) vs. \(\nu/(2\pi) \)

\(u_h \) and \(\cos(\nu + \omega) \) vs. \(\nu/(2\pi) \) when \(u_h \) becomes \(-1\) during the GTO-2 to GEO transfer.
Although the optimal transfer time of 65.9 days is similar to the results found in literature, the transfer time obtained in this study is an improvement over previous results. For example, Kluever and Oleson [9] employ orbital averaging and direct optimization with control parameterization to obtain a transfer time of 67.0 days. Kluever and Oleson [9] also include the optimal solution obtained using the software SEPSPOT [36], where SEPSPOT employs orbital averaging with calculus of variations to obtain an optimal transfer time of 66.6 days. Finally, Gao [10] employs orbital averaging with parameter optimization to obtain a transfer time of 70.2 days. Thus, the solution obtained in this study has an optimal cost of approximately one day less than the lowest cost obtained in prior research and was obtained using a high-accuracy method. Although orbital averaging is more computationally efficient when compared to the direct collocation approach of this paper, the errors accumulated by averaging the equations of motion may be large. As a consequence, the spacecraft is unlikely to reach the desired terminal orbit using the control obtained with an orbital averaging approach.

B. Case 2: Geostationary Transfer Orbit 2 to Geostationary Orbit Transfer Results

Figure 4 shows the optimal GTO-2 to GEO trajectory in ECI Cartesian coordinates \((x, y, z)\). The multiple-phase optimal control problem contains 101 phases. The Earth-shadow regions appear near apoapsis at the start of the transfer and slowly shift away from apoapsis toward the descending node. Because the orbital velocity is the smallest near apoapsis, the amount of time spent in the Earth’s shadow is quite significant at just over eight days. Moreover, shadow regions do not exist after 59 days. The optimal solution has a final time of 121.22 days and a final mass of 1027.77 kg, and it completes approximately 165 orbital revolutions. Next, the time histories of \(u, i,\) and \(\cos(u + \omega)\) vs \(\nu/(2\pi)\) are shown in Figs. 5a–5c, respectively. It is seen from Fig. 5a that the semimajor axis increases rapidly for the first half of the transfer, then steadily increases to the desired terminal value. Furthermore, it is seen from Fig. 5b that the eccentricity decreases at a slower rate in the first half of the transfer, then rapidly decreases throughout the rest of the transfer. Finally, it is seen from Fig. 5c that the inclination decreases at an approximately linear rate throughout the transfer.

Next, the optimal transfer time of 121.22 days obtained in this study is in close proximity to the transfer time of 118.36 days obtained in [34]. Now, although the transfer time obtained in this study is 2.4% larger than the transfer time obtained in [34], the discrepancy is due to the fact that the approach of this paper differs significantly from the approach used in [34]. Specifically, the approach of [34] employs orbital averaging of the equations of motion. Furthermore, Kluever [34] includes only the \(J_2\) gravity perturbation over each orbital revolution and employs a cylindrical Earth-shadow model. Because the equations of motion are replaced by their orbital revolution averages, the solution obtained in [34] is less accurate than the solution obtained using the direct collocation method of this study. Moreover, averaging the zonal harmonic \(J_2\) has a significant effect on both the longitude of the ascending node and the argument of the perigee.

Table 4 Numerical results for SSTO to GEO transfers

<table>
<thead>
<tr>
<th>Departure date</th>
<th>Number of phases</th>
<th>Time in shadow, h</th>
<th>Final time, day</th>
<th>Final mass, kg</th>
<th>Final true longitude, revolutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernal equinox</td>
<td>16</td>
<td>51.47</td>
<td>75.42</td>
<td>1121.42</td>
<td>62.22</td>
</tr>
<tr>
<td>Summer solstice</td>
<td>25</td>
<td>12.21</td>
<td>72.60</td>
<td>1122.68</td>
<td>59.31</td>
</tr>
<tr>
<td>Autumnal equinox</td>
<td>31</td>
<td>15.06</td>
<td>73.49</td>
<td>1121.86</td>
<td>59.23</td>
</tr>
<tr>
<td>Winter solstice</td>
<td>19</td>
<td>12.01</td>
<td>73.06</td>
<td>1122.18</td>
<td>59.24</td>
</tr>
</tbody>
</table>

Fig. 10 \(u, i,\) and \(\cos(u + \omega)\) vs \(\nu/(2\pi)\) during the final few orbital revolutions of the GTO-2 to GEO transfer.
of periapsis, both of which describe the orientation of the orbit and subsequently influence the location in the orbit where an Earth-shadow region appears. Finally, the cylindrical shadow model employed in [34] will result in smaller shadow regions when compared against the conical projection model employed in this study. Further insight into the structure of the optimal transfer is obtained by examining the optimal control \(u = (u_r, u_d, u_h) \) along different segments of the solution. Figure 6 shows that four segments identify the key features of the optimal control: 1) the first few orbital revolutions of the transfer, 2) the region where \(u_r \approx 0 \), 3) the region where \(u_h \) becomes \(-1\), and 4) the final orbital revolutions of the transfer.

First, Fig. 7a shows the optimal control in the first few orbital revolutions of the transfer, where the gaps in the control are due to the Earth-shadow regions. In this segment of the transfer, \(u_r \) is positive near \(\nu = \pi/2 \) and negative near \(\nu = 3\pi/2 \), whereas a positive \(u_h \) dominates the thrust direction along all \(\nu \) except just before \(\nu = \pi \). The net effect of \(u_r \) and \(u_h \) is then to increase the semimajor axis and to decrease the eccentricity. Similar to the first few orbital revolutions, \(d\theta/dt \) coincides with the minimum value of \(\cos(\nu + \omega)u_h \) before \(\nu = \pi \). Because the shadow region appears near apoapsis, the inclination change must be performed elsewhere. In this segment of the transfer, the inclination change is performed most efficiently immediately before apoapsis.

The optimal control in the segment of the transfer where \(u_r \approx 0 \) is shown in Fig. 8. For every orbital revolution beyond where \(u_r \) becomes zero (that is, all values beyond \(\nu/(2\pi) = 90.5 \)), the behavior of \(u_r \) changes from its behavior in the first few orbital revolutions such that \(u_r \) is now negative near \(\nu = \pi/2 \) and positive near \(\nu = 3\pi/2 \). Because \(u_r \approx 0 \) and the thrust direction lies predominately in the positive \(u_d \) direction (except just before \(\nu = \pi \)), the overall result is to increase the semimajor axis and to decrease the eccentricity. Similar to the first few orbital revolutions, \(d\theta/dt \) is most negative before apoapsis. Even as the shadow region shifts away from apoapsis toward the descending node, \(u_h \) efficiently decreases the inclination by dominating the thrust direction just before \(\nu = \pi \).

Next, Fig. 9a shows the optimal control in the segment of the transfer where \(u_h \) becomes \(-1\). At this particular point in the transfer, the Earth-shadow regions cease to exist (near \(\nu = 99.6 \)), and \(u_h \) is now negative near \(\nu = \pi/2 \) and positive near \(\nu = 3\pi/2 \). Moreover, \(u_h \) no longer dominates the thrust direction, reaching its most positive value at \(\nu = 5\pi/4 \) and a gradually decreasing value at periapsis. The combined effect of \(u_r \) and \(u_h \) is then to increase the semimajor axis and to decrease the eccentricity. In Fig. 9b, it is seen that \(d\theta/dt \) is negative at periapsis and apoapsis, whereas Fig. 9c shows that \(\cos(\nu + \omega)u_h \) is negative when \(\nu \approx 0 \) and \(\nu \approx 3\pi/4 \). Because the orbital velocity is much smaller at apoapsis than it is at periapsis, the inclination change observed near apoapsis is larger than the change observed near periapsis.

Finally, Fig. 10a shows the optimal control during the last few orbital revolutions of the transfer. Shadow regions do not exist in this segment of the transfer. In the final few orbital revolutions, \(u_r \) is negative near \(\nu = \pi/2 \) and positive near \(\nu = 3\pi/2 \), whereas \(u_h \) is positive near \(\nu = 0 \) and is negative near \(\nu = \pi \). Thrusting in this manner increases periapsis and decreases apoapsis, and thus the overall effect of \(u_h \) and \(u_d \) is to increase the semimajor axis and to decrease the eccentricity. From Fig. 10b, it is seen that \(d\theta/dt \) is a minimum near \(\nu = 3\pi/4 \) and \(\nu = 7\pi/4 \), whereas Fig. 10c shows that \(\cos(\nu + \omega)u_h \) is negative at \(\nu = 3\pi/4 \) and \(\nu = 7\pi/4 \). Because the orbit is nearly circular at the end of the transfer, the rate at which the inclination decreases is essentially the same at \(\nu = 3\pi/4 \) and \(\nu = 7\pi/4 \).

C. Case 3: Supersynchronous Transfer Orbit to Geostationary Orbit

Transfer Results

The results for the selected departure dates are shown in Table 4. Although the minimum times obtained were similar for three of the dates, the summer solstice departure yielded the best result with a transfer time of 72.60 days and had the largest payload of 1122.68 kg.

Moreover, the least desirable departure date was the vernal equinox, where almost three additional days were required to complete the transfer. The payload delivered, however, was nearly the same for all dates considered.

The optimal SSTO to GEO trajectories are shown in ECI Cartesian coordinates \((x, y, z)\) in Figs. 11–14 for the vernal equinox, summer
solstice, autumnal equinox, and winter solstice departures, respectively. For each of these four transfers, the shadow regions appear at the beginning of the transfer in key locations throughout the orbit.

1) The vernal equinox transfer has shadow regions near apoapsis.
2) The summer solstice transfer has shadow regions near the descending node.
3) The autumnal equinox transfer has shadow regions near periapsis.
4) The winter solstice transfer has shadow regions near the ascending node.

In addition to shadow regions that appear in the beginning of the transfer, the summer solstice and winter solstice transfers have additional shadow regions that appear in the last few orbital revolutions of the transfers. The locations of the shadow regions are consistent with the fact that spacecraft in GEO will travel through the Earth’s shadow in an orbital revolution that occurs between the end of February and the middle of April or between the beginning of September and the middle of October. Because the summer solstice transfer takes 72.60 days, the spacecraft will approach GEO near the beginning of September and subsequently travels through the Earth’s shadow again as it nears its terminal orbit.

Figure 15a shows the semimajor axis time history for the vernal equinox departure. For the vernal equinox, autumnal equinox, and winter solstice dates, the semimajor axis increases slightly during the first few days of the transfer and then steadily decreases throughout the rest of the transfer. In the summer solstice transfer, however, the semimajor axis decreases throughout the entire transfer. For all departure dates considered, the eccentricity and inclination both steadily decrease throughout the transfer as shown in Figs. 15b and 15c, respectively, for the vernal equinox departure. The control components u, θ, h for the vernal equinox departure are shown in Fig. 16. Although the overall behavior of the control components is fairly similar between all of the departure dates considered, further insight into the structure of the optimal transfers is gained by examining the behavior of the control components during the first few orbital revolutions where the shadow regions are present. The final few orbital revolutions are also examined.
The control components during the first few orbital revolutions for the departure dates considered are shown in Fig. 17. It is seen that the radial component of the control in the initial part of the transfer is similar for all of the departure dates and becomes negative near \(\nu = \pi/2 \) and positive near \(\nu = 3\pi/2 \). On the other hand, the tangential component \(u_t \) and the normal component \(u_\theta \) do not exhibit similar behavior between all departure dates. For all departure dates other than the vernal equinox, \(u_t \) is negative near \(\nu = 0 \) and positive near \(\nu = \pi \), whereas \(u_\theta \) is negative near \(\nu = 0 \) and positive near \(\nu = \pi \). The cyclic behavior of \(u_\theta \) raises periapsis and apoapsis when \(\nu = [\pi/2, 3\pi/2] \) and lowers periapsis and apoapsis when \(\nu = [3\pi/2, 5\pi/2] \) (including angle wrap). Beginning with the summer solstice transfer, shown in Fig. 17b, the effect of \(u_t \) is to lower apoapsis and raise periapsis when \(\nu \in [0, \pi] \). Because the shadow region appears near \(\nu = 3\pi/2 \), however, \(u_t \) cannot as effectively increase apoapsis and decrease periapsis between \(\nu = [\pi, 2\pi] \). In addition, \(u_t \) cannot increase both periapsis and apoapsis. Thus, the overall net effect of \(u_t \) and \(u_\theta \) is to decrease both the semimajor axis and the eccentricity. Next, for the autumnal equinox transfer shown in Fig. 17c, the shadow regions appear near periapsis. Because the spacecraft cannot thrust near \(\nu = 0 \), \(u_t \) cannot effectively lower periapsis and apoapsis. The net effect of \(u_t \) and \(u_\theta \), therefore, is to increase the semimajor axis and to decrease the eccentricity. Examining the winter solstice transfer shown in Fig. 17d, the shadow region is initially near \(\nu = \pi/2 \), and thus the apoapsis decrease and periapsis increase when \(\nu \in [0, \pi] \) are less than the periapsis decrease or apoapsis increase would be if thrust were available. Furthermore, \(u_\theta \) cannot lower both periapsis and apoapsis. As a result, the net effect of \(u_t \) and \(u_\theta \) is to increase the semimajor axis and to decrease the eccentricity. Recalling that \(u_\theta \) exhibits similar behavior for the summer solstice, autumnal equinox, and winter solstice transfers, the minimum value of \(\text{d}i/\text{d}t \) corresponds to the minimum value of \(\cos(\nu + \omega)u_\theta \) at \(\nu = \pi \). Thus, the inclination decreases most rapidly near apoapsis, where the orbital velocity of the spacecraft is the smallest. Finally, for the vernal equinox transfer shown in Fig. 17a, the behavior of \(u_t \) and \(u_\theta \) is different from the behavior observed for the other departure dates because the shadow regions appear near apoapsis. For the vernal equinox, \(u_\theta \) is most negative near \(\nu = \pi/4 \) and most positive near \(\nu = 5\pi/4 \). Even though the behavior of \(u_\theta \) is different for the vernal equinox transfer due to the location of the shadow regions near apoapsis, \(u_\theta \) still lowers both periapsis and apoapsis when \(\nu \in [3\pi/2, 5\pi/2] \) and raises both periapsis and apoapsis when \(\nu \in [\pi/2, 3\pi/2] \). Therefore, the combined effect of \(u_t \) and \(u_\theta \) is to increase the semimajor axis and to decrease the eccentricity. Furthermore, the normal component \(u_\theta \) is positive near \(\nu = 3\pi/4 \) and negative near \(\nu = 3\pi/2 \). Different from the other departure dates, the vernal equinox transfer cannot perform the inclination change near apoapsis during the first few orbital revolutions of the vernal equinox transfer. Examining Fig. 18a, \(\text{d}i/\text{d}t \) is most negative before apoapsis, which is consistent with Fig. 18b, where the minimum value of \(\text{d}i/\text{d}t \) coincides with the minimum value of \(\cos(\nu + \omega)u_\theta \) just before \(\nu = \pi \).

The control components during the final few orbital revolutions of the transfer exhibit similar behavior for all of the departure dates. The control components for the vernal equinox departure are shown in Fig. 19. At the end of the transfer, \(u_\theta \) is negative near \(\nu = \pi/2 \) and positive near \(\nu = 3\pi/2 \); whereas \(u_\theta \) is negative near \(\nu = 0 \) and positive near \(\nu = \pi \). Thrusting in this manner increases periapsis and decreases apoapsis, and thus the net effect of \(u_t \) and \(u_\theta \) is to decrease both the semimajor axis and the eccentricity. Last, \(u_\theta \) is negative near \(\nu = 0 \) and positive near \(\nu = \pi \). At this point in the transfer, the orbit is nearly circular, and the rate at which the inclination decreases is essentially the same at periapsis and apoapsis.
a) Vernal equinox

b) Summer solstice

c) Autumnal equinox

d) Winter solstice

Fig. 17 u vs $\nu/(2\pi)$ during the first few orbital revolutions of the SSTO to GEO transfer with a vernal equinox, a summer solstice, an autumnal equinox, and a winter solstice departure.

Fig. 18 i, u_h, and $\cos(\nu + \omega)$ vs $\nu/(2\pi)$ during the first few orbital revolutions of the SSTO to GEO transfer with a vernal equinox departure.
IV. Conclusions

The problem of minimum-time low-thrust trajectory optimization with eclipsing constraints has been considered. The low-thrust orbit transfer problem is formulated as a multiple-phase optimal control problem. The optimal control problem is solved using an adaptive Gaussian quadrature orthogonal collocation method. An initial guess is constructed by solving a series of single-phase optimal control problems with continuous thrust. By analyzing these initial guesses, the approximate shadow entrance and exit locations are determined, and an intelligent guess is constructed for the multiple-phase optimal control problem with eclipsing constraints. Assuming Keplerian motion during an eclipse, event constraints are enforced that relate the orbit at the terminus of an eclipse to the orbit at the start of an eclipse based on the geometry of the shadow region and eliminate the need to include coast phases in the optimization problem. Three Earth-orbit transfers were chosen to demonstrate the approach developed in this research, and the key features of the optimal trajectories were analyzed.

Acknowledgments

The authors gratefully acknowledge support for this research by the NASA Florida Space Grant Consortium under grant NNX10AM01H, by Space Florida under grant 11-107, and by NASA under grant NNX14AN88G.

References

