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ABSTRACT

An object-oriented method is presented that generates derivatives of functions

defined by MATLAB computer codes. The method uses operator overloading to-

gether with forward mode automatic differentiation and produces a new MATLAB

code that computes the derivatives of the outputs of the original function with

respect to the variables of differentiation. The method can be used recursively

to generate derivatives of any order that are desired and has the feature that the

derivatives of a function are generated simply by evaluating the function on an

instance of the class. The method is described briefly and is demonstrated on an

example.

I. Introduction

In the past few decades, a great deal of research has focused on automatic differentiation (AD).
AD is the process of determining accurate derivatives of a function defined by computer programs1

using the rules of differential calculus. In other words, the goal of AD is to employ ordinary
calculus algorithmically with the goal of obtaining machine precision accuracy derivatives in a
computationally efficient manner. AD exploits the fact that a computer code that implements a
general function y = f(x) can be decomposed into a sequence of elementary function operations. The
derivative is then obtained by applying the standard differentiation rules (e.g., product, quotient,
and chain rules). The most well known methods for automatic differentiation are forward and reverse

mode. In either forward or reverse mode, each link in the calculus chain rule is implemented until the
derivative of the input with respect to itself is encountered. The fundamental difference between
forward and reverse modes is the direction in which the operations are performed. In forward
mode, the operations are performed from the variable of differentiation to the final derivative of the
function, while in reverse mode the operations are performed from the function back to the variable
of differentiation.

In this paper we present a new approach for automatic differentiation of MATLAB code. The
method of this paper combines features of operator-overloading and source transformation together
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with forward mode automatic differentiation in a manner that produces a new MATLAB code
that contains statements to compute the derivative of the original MATLAB function in terms
of the native MATLAB library. In order to realize our approach, a new MATLAB object class,
called CADA (where CADA stands for “Computation of Analytic Derivatives Automatically”), is
developed. Using instances of class CADA, it is possible to obtain the derivatives by evaluating the
function on the input CADA object. CADA then produces a file that contains the statements that
compute the derivative of the original function with respect to the input variable. The sequence of
mathematical operations in the file that computes the derivative file is identical to those obtained
by applying the forward mode on a numeric value of the variable of differentiation. Finally, the
method is applied to an example to demonstrate its utility.

II. Forward Mode Automatic Differentiation

Consider a function y = f(x) where f : Rm×n −→ R
p×q. Assume that f(x) can be reduced to a

sequence of elementary function operations (e.g., polynomials, exponential functions, trigonometric
functions). Furthermore, suppose that a computer implementation of the f(x) has been written in
the MATLAB programming language. The goal is to automatically determine Jf(x), that is, the
goal is to determine the derivative of each output function fij, (i = 1, . . . , p), (j = 1 . . . , q) with
respect to each input element xkl, (k = 1, . . . ,m), (l = 1, . . . , n). Moreover, it is desired to obtain
a new MATLAB code that implements these derivatives for future use. The method of this paper
uses an object-oriented approach that implements forward mode automatic differentiation in such a
way that each operation in a function is differentiated in terms of the results of previous operations,
and the result of each operation is printed to a file. In forward mode differentiation, the chain rule
is used repeatedly until the step in the chain is encountered where the derivative of the outermost
function with respect to the input is obtained. In the case of a scalar function y = f(g(x)), the
derivative ∂f/∂x is obtained via the chain rule as ∂f/∂x = ∂f/∂g · ∂g/∂x. Finally, as part of the
method developed in this paper, only the nonzero elements of the Jacobian are stored, reducing
memory requirements and taking advantage of Jacobian sparsity.

A. CADA Differentiation Method

The method used in CADA to differentiate a function by evaluating the function on overloaded
CADA objects relies upon the interaction between the different CADA object properties and a global
CADA environment, GLOBALCADA. Each CADA object contains a function and derivative

property, where the function property contains sizing and naming information, and the derivative

property contains nonzero derivative locations. When any mathematical operation is evaluated on
a CADA object, the lines of code that represent the mathematical operation and the derivative of
the mathematical operation are printed to a temporary file. As an example of how an overloaded
operation is written to the temporary file, consider a mathematical operation z = f(x) and assume
that this mathematical operation is applied to a CADA object X , resulting in an output CADA

object Z (that is, Z = f(X )). While the object properties of X contain information from previous
overloaded evaluations up to that point in the overall function, the GLOBALCADA information is
needed to define the function and derivative handles of the output Z. First, a check is performed
to determine if the input X is a CADA numeric object. In this case the function property of Z
is calculated directly and no code is written to the temporary file. If X is not a CADA numeric
object, new function and derivative handles are defined for Z and the code that represents z = f(x)
and the derivative of z = f(x) are printed to the temporary file. In this second case, only the code
that corresponds to the nonzero derivatives of the operation with respect to each CADA instance
is written to the temporary file. Because the derivatives are computed sparsely, it is necessary that
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the appropriate elements of the function property of X are properly referenced such that the code
resulting from the application of the calculus chain rule is applied to only the elements in the array
whose derivatives are not zero. For every overloaded operation he GLOBALCADA properties are
also updated to track the occurrence of variables in the resulting derivative code (see Ref. 2 for
details).

B. CADA Setup and Environment Instantiation

The CADA global environment and all CADA instances that are used in generating derivative code
are instantiated using the function cadasetup. The cadasetup function performs the following
operations: (1) instantiates the global structure GLOBALCADA; (2) defines the initial property
values for GLOBALCADA; (3) creates and opens a temporary file to which the derivative code
will be written; (4) and creates all instances that will be used during the CADA session. For each
CADA instance that is desired, cadasetup requires the following four inputs: a string containing
the name of the CADA instance (where each instance must have a unique name and the name
cannot be a MATLAB reserved word); two integers that, respectively, define the row and column
size of the CADA instance; and an integer flag that indicates whether or not CADA should compute
derivatives with respect to the particular CADA instance. If the derivative option flag corresponding
to a CADA instance is unity, then derivatives with respect to the CADA instance are calculated. On
the other hand, if the derivative option flag corresponding to a CADA instance is zero, derivatives
with respect to the CADA instance are not calculated.

C. Differentiation of Unary Mathematical Functions

The overloaded versions of all standard unary mathematical functions (e.g., polynomial, trigono-
metric, exponential) operate on only a single CADA input object, resulting in an output that is a
new CADA object. Consider an arbitrary unary mathematical operation z = f(x) and assume that
this mathematical operation is applied to a CADA object X , resulting in an output CADA object
Z (that is, Z = f(X )). If the input is not a CADA numeric object, new code that represents the
function and its derivative with respect to each CADA instance is written to the temporary file.
The nonzero derivative indices of the output will be the same as the nonzero derivative indices of
the input. If the input to the overloaded unary operation is a CADA numeric object, the output of
the overloaded unary operation is also a CADA numeric object. In this case the numeric array in
the CADA numeric object is evaluated and neither are derivatives calculated nor is code written to
the temporary file.

D. Differentiation of Binary Mathematical Functions

The overloaded binary mathematical functions (e.g., plus, minus, times, array multiplication) have
two inputs, where at least one of the inputs must be a CADA object and the output is a CADA

object. Consider a binary mathematical operation z = f(x,y). If x is a CADA object but y is not
a CADA object, then the function is evaluated as Z = f(X ,y). Similarly, if y is a CADA object
but x is not a CADA object, then the function is evaluated as Z = f(x,Y). Finally, if both x

and y are CADA objects, then the function is evaluated as Z = f(X ,Y). First, it is necessary to
determine the class of each input. If only one of the inputs is a CADA object, then the operation
follows in a manner similar to that of a unary function. In the case where both inputs are CADA

objects, it is necessary to determine if any or both inputs are CADA numeric objects. If both inputs
are CADA numeric objects, the function is evaluated on the numeric values of X and Y, resulting
in the CADA numeric object Z. Furthermore, as is the case with all CADA numeric objects, no
derivatives are calculated and no code is written to the temporary file. If exactly one of the two
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inputs is a CADA numeric object, the numeric value of the CADA numeric object is found and the
overloaded operation is performed as if only one of the inputs is a CADA object. Lastly, if both
CADA objects contain derivatives with respect to the same CADA instance, the binary chain rule
(e.g., product rule, quotient rule, etc.) is applied to calculate the nonzero derivatives. The nonzero
derivative indices of the output are determined by taking the union of the nonzero derivative indices
of X and Y.

III. Example

We now apply CADA to an example. The example is a large sparse nonlinear programming
problem (NLP). The objective of the example is to demonstrate how CADA generates the con-
straint Jacobian and Lagrangian Hessian of a complex NLP. In the example the efficiency CADA is
compared against INTLAB, ADMAT, and MAD. Finally, it is noted that all computations shown
in this section were performed using an Apple MacPro 2.26 GHz Quad-Core Intel Xeon computer
with 16 GB of RAM running Mac OS-X Snow Leopard version 10.6.8 and MATLAB R2010b.

Consider the following sparse nonlinear programming problem (NLP) that arises from the dis-
cretization of the optimal control problem from Ref. 3 using the Radau pseudospectral method
described in Refs. 4–6. The NLP decision vector z ∈ R

6N+4 is given as

z = (x1,x2,x3,x4,w1,w2), (1)

where N is a parameter that defines the total number of Legendre-Gauss-Radau (LGR) points,7

xi = (x1,i, . . . , xN+1,i), (i = 1, . . . , 4), and wi = (w1,i, . . . , wN,i), (i = 1, 2). The objective of the
NLP is to minimize the cost function

J = −xN+1,1 (2)

subject to the nonlinear algebraic constraints

N+1
∑

k=1

Di,kxk,1 −
κ

2
xi,3 = 0,

N+1
∑

k=1

Di,kxk,2 −
κ

2

xi,4
xi,1

= 0,

N+1
∑

k=1

Di,kxk,3 −
κ

2

[

x24,i
xi,1

−
1

x2i,1
+Kiwi,1

]

= 0,

N+1
∑

k=1

Di,kxk,4 −
κ

2

[

−
x3,ix4,i
xi,1

+Kiwi,2

]

= 0,

w2
i,1 + w2

i,2 − 1 = 0,

(3)

and the equality constraints

x1,1 − u1 = 0 , x1,2 = 0 , x1,3 = 0 , x1,4 − u2 = 0 , xN+1,2 = 0 ,
√

u3/xN+1,1 − xN+1,4 = 0, (4)

where i = 1, . . . ,K in Eq. (3) and Di,k, (i = 1, . . . , N, k = 1, . . . , N+1) is the Radau pseudospectral
differentiation matrix,

ti =
κ

2
si +

κ

2
, Ki =

u4
u5ti + u6

. (5)

(s1, . . . , sN ) are the N LGR points on the interval [−1,+1) and sN+1 = +1 and (i = 1, . . . , N) in
Eqs. (3) and (5). The total number of LGR points, N = NkK, is obtained by dividing the problem
into K mesh intervals using Nk LGR points in each mesh interval (for details see Ref. 6). The
numerical values of the parameters u1, . . . , u6, and κ used in this example are given in Table 1.

The NLP defined in Eqs. (2) and (3) can be written in the more generic mathematical form

minimize f(z) subject to g(z) = 0 and zmin ≤ z ≤ zmax. (6)
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Table 1: Numerical Values of Parameters for Example 2.

Parameter u1 u2 u3 u4 u5 u6 κ

Value 1 1 1 0.1405 -0.0749 1 3.32

We divide the analysis in this example into two parts. First, we study the efficiency with which
CADA generates and computes the constraint Jacobian, ∂g/∂z, and the Lagrangian Hessian,
∂2L/∂z2, where L = σf(z) + λ

Tg(z) and the variables σ ∈ R and λ ∈ R
6N are the Lagrange

multipliers for the cost and the constraints, respectively [where we note that λ ∈ R
5N because the

NLP contains 5N nonlinear constraints as shown in Eq. (3)]. Second, we demonstrate the efficiency
of CADA in solving the NLP for various values of N . In order to incorporate both first and second
derivatives, in this research the NLP was solved using the second-derivative open-source NLP solver
IPOPT 8 with the indefinite sparse symmetric linear solver MA57.9 As a second derivative NLP
solver, IPOPT requires the user to supply the objective function gradient, ∂f/∂z, the constraint
Jacobian, ∂g/∂z, the Lagrangian Hessian, ∂2L/∂z2, the sparsity pattern of the constraint Jacobian,
and the sparsity pattern of the lower-triangular portion of the Lagrangian Hessian.

In order to analyze the derivative efficiency as the NLP grows in size, we fix the number of LGR
points in each mesh interval to four (that is, Nk = 4) and we vary the number of mesh intervals K.
Thus, in this example the total number of LGR points is N = 4K. Table 2 shows the Jacobian-
to-function ratio, CPU(Jg)/CPU(g), for the NLP constraint function of Eq. (6 as a function of
N . It is seen that the ratio CPU(Jg)/CPU(g) using CADA is smaller than any of the other
methods for all values of N except N = 256. In the case N = 256, INTLAB is more efficient than
CADA in generating the constraint Jacobian, but CADA is more efficient than either ADMAT or
MAD. Table 3 shows the Hessian-to-function ratio, CPU(HL)/CPU(L), for the Lagrangian Hessian
L = σf(z) + λ

Tg(z). In the case of the Hessian Lagrangian it is seen that CADA is more efficient
than INTLAB and is significantly more efficient than either ADMAT or MAD for all values of N .

Table 2: CADA Derivative Generation Time and Jacobian-to-Constraint Computation Time Ratio,
CPU(Jg)/CPU(g), for Example Using CADA, INTLAB, ADMAT and MAD. Derivative Generation
Times Using CADA Were Averaged Over 100 File Generations, While CPU(Jg)/CPU(g) Was
Obtained by Averaging the Values Obtained Over 1000 Jacobian and Function Evaluations.

Derivative Code CPU(Jg)/CPU(g) CPU(Jg)/CPU(g) CPU(Jg)/CPU(g) CPU(Jg)/CPU(g)

K N = 4K Generation Time Ratio Using Ratio Using Ratio Using Ratio Using

Using CADA (s) CADA INTLAB ADMAT MAD

8 32 0.279 5.26 31.3 37.4 48.2

16 64 0.468 6.83 32.4 37.6 47.8

32 128 0.854 9.24 33.1 37.8 47.5

64 256 1.62 15.1 34.1 46.9 48.2

128 512 3.18 25.6 38.8 47.1 50.4

256 1024 6.28 44.5 40.1 48.1 51.6

We now turn our attention to the solution of the aforementioned NLP using CADA, INT-

LAB, ADMAT, and MAD with the NLP solver IPOPT. Next, because IPOPT requires that the
user provide the constraint Jacobian and Lagrangian Hessian sparsity patterns, it was necessary to
construct these patterns prior to solving the NLP. While it is possible to determine the Jacobian
and Lagrangian Hessian sparsity patterns with ADMAT, we found the process for determining the
Hessian sparsity pattern to be unacceptably slow. In addition, INTLAB does not have a built-in
capability of determining either Jacobian or Hessian sparsity patterns. As a result, the approach
used in this research was to use the constraint Jacobian and Lagrangian Hessian sparsity pat-
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Table 3: CADA Derivative Generation Time and Lagrangian Hessian to Lagrangian Computa-
tion Time Ratio, CPU(HL)/CPU(L) for Example Using CADA, INTLAB, ADMAT and MAD.
Derivative Generation Times Using CADA Were Averaged Over 100 File Generations, While
CPU(HL)/CPU(L) Was Obtained by Averaging the Values Obtained Over 1000 Lagrangian Hessian
and Lagrangian Function Evaluations.

Hessian Code CPU(HL)/CPU(L) CPU(HL)/CPU(L) CPU(HL)/CPU(L) CPU(HL)/CPU(L)

K N = 4K Generation Time Ratio Using Ratio Using Ratio Using Ratio Using

Using CADA (s) CADA INTLAB ADMAT MAD

8 32 0.606 17.52 119.4 771.3 588.4

16 64 0.886 28.93 156.4 1072 906.7

32 128 1.46 65.78 411.4 1831 2334

64 256 2.67 242.4 1365 3476 7456

128 512 5.03 835.2 4058 9592 23157

256 1024 10.27 2806 15553 33623 89330

terns that CADA generates simultaneous with its generation of the Jacobian and Hessian derivative
functions. These sparsity patterns were then supplied to IPOPT for use with all three automatic
differentiation programs. Finally, it is noted that the constraint Jacobian was determined by differ-
entiating Eq. (3). On the other hand, it is known that the terms Eq. (3) involving the coefficients
Di,k, (i = 1, . . . , N, j = 1, . . . , N + 1) are linear in the decision vector. Consequently, the second
derivatives of these terms are zero and, thus, will not appear in the Lagrangian Hessian. Thus,
the terms involving the coefficients Di,k, (i = 1, . . . , N, j = 1, . . . , N + 1) are not included in the
computation of the NLP Lagrangian.

The NLP given in Eqs. (2)–(4) was solved using IPOPT for K = (8, 16, 32, 64, 128, 256) with
Nk = 4, (k = 1, . . . ,K) (that is, the same number of Legendre-Gauss-Radau points7 was used in ev-
ery mesh interval) with the following initial guess: {x1,i, · · · , xN+1,i} = 1, i = 1, 4, {x1,i, · · · , xN+1,i}
= 0, i = 2, 3, and {w1,i, . . . , xN,i} = 0, i = 1, 2. The results obtained for this example are shown
in Tables 4 and 5. As may be expected, the derivative code generation time using CADA increases
with K. In addition, it is seen that the time required to solve the NLP (excluding the time required
to create the derivative files) using CADA is smaller than the corresponding computation time re-
quired by either INTLAB or ADMAT. Next, it is noted that the total computation time (that is,
the derivative code generation time plus the time to solve the NLP) using derivatives obtained by
CADA is less than the solution time required by either of the other automatic differentiators, and
for the larger values of K the total computation time using CADA is significantly less than either
INTLAB, ADMAT, or MAD. Thus, CADA becomes more computationally attractive as the size of
the NLP increases.
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Table 4: IPOPT Solution Times for Example Using CADA, INTLAB, ADMAT, and MAD.

Derivative Code IPOPT IPOPT IPOPT IPOPT

K N = 4K Generation Time Run Time Run Time Run Time Run Time

Using CADA (s) Using CADA (s) Using INTLAB (s) Using ADMAT (s) Using MAD (s)

8 32 0.893 0.491 1.68 6.37 5.31

16 64 1.36 0.834 2.28 10.39 8.17

32 128 2.33 1.95 5.46 18.51 28.62

64 256 4.30 5.06 18.77 45.67 101.1

128 512 8.22 19.24 67.64 225.3 368.1

256 1024 16.56 117.2 423.1 1386 2298

Table 5: Problem Size and Densities of Constraint Jacobian and Lagrangian Hessian for Example.

NLP NLP Jacobian Jacobian Hessian Hessian

K N = 4K Variables Constraints Non-Zeros Density (%) Non-Zeros Density (%)

8 32 196 161 994 3.15 321 0.835

16 64 388 321 1986 1.59 641 0.425

32 128 772 641 3970 0.802 1281 0.215

64 256 1540 1281 7938 0.402 2561 0.108

128 512 3076 2561 15874 0.201 5121 0.054

256 1024 6148 5121 31746 0.101 10241 0.027

IV. Conclusions

An object-oriented method has been described for computing derivatives of MATLAB functions.
A new class called CADA has been developed. The derivatives of a general function can be obtained
by evaluating a function of interest on a CADA object and writing the derivatives to a file that
itself can be executed. The derivative file contains the same sequence of operations as the forward
mode of automatic differentiation. Moreover, because the derivative function has the same input
as the original function computer code, it is possible to apply the method recursively to generate
higher-order derivatives. As a result, the method provides the ease of use associated with forward
mode automatic differentiation while simultaneously providing the same functionality as would be
obtained had the analytic derivatives been coded by hand. The key components of the method have
been described in detail and the usability of the method was demonstrated on an example. The
method presented in this paper provides an efficient and reliable approach for computing analytic
derivatives of general MATLAB functions.
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